Skip to main content

Abstract

Lytic Polysaccharide Monooxygenases have now been evolved as one of the most promising enzymes, attracting huge research attention due to their potential use in saccharification of lignocellulosic biomass for the production of fuels and value added chemicals. In the presence of molecular oxygen, these copper depended enzymes break the recalcitrant cellulose chain by a combined oxidative and hydrolytic action, and increase the substrate accessibility for other cellulases to work. This ‘boosting effect’ and ability to act in synergy makes them important subject to research, towards the future goal of sustainable bioeconomy. Diversity of this enzyme group ranges from early discovered chitin and cellulose active ones, to the recently identified hemicellulose and starch active ones. In this chapter we present a brief summary about LPMOs and the findings related to them from their discovery to the recent developments.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-54684-1_15.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agger JW, Isaksen T, Várnai A et al (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111:6287–6292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  PubMed  Google Scholar 

  • Cannella D, Hsieh C-W, Felby C et al (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimarogona M, Topakas E, Olsson L et al (2012) Lignin boosts the cellulase performance of a GH-61 enzyme from Sporotrichum thermophile. Bioresour Technol 110:480–487

    Article  CAS  PubMed  Google Scholar 

  • Dimarogona M, Topakas E, Christakopoulos P (2013) Recalcitrant polysaccharide degradation by novel oxidative biocatalysts. Appl Microbiol Biotechnol 97:8455–8465

    Article  CAS  PubMed  Google Scholar 

  • Forsberg Z, Vaaje-Kolstad G, Westereng B et al (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg Z, Røhr ÅK, Mekasha S et al (2014) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 53:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Harris PV, Welner D, Mcfarland K et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  PubMed  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ et al (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10:122–126

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaksen T, Westereng B, Aachmann FL et al (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632–2642

    Article  CAS  PubMed  Google Scholar 

  • Karkehabadi S, Hansson H, Kim S et al (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J Mol Biol 383:144–154

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. In: Biofuels. Springer, Berlin, pp 95–120

    Chapter  Google Scholar 

  • Phillips CM, Beeson Iv WT, Cate JH et al (2011) Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 6:1399–1406

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Sweeney MD, Leggio LL et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Reese ET, Siu RG, Levinson HS (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J Bacteriol 59:485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, Van Aalten DM et al (2005a) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Houston DR, Riemen AH et al (2005b) Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 280:11313–11319

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Westereng B, Horn SJ et al (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330:219–222

    Article  CAS  PubMed  Google Scholar 

  • Vaaje-Kolstad G, Bøhle LA, Gåseidnes S et al (2012) Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 416:239–254

    Article  CAS  PubMed  Google Scholar 

  • Vu VV, Beeson WT, Span EA et al (2014) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:13822–13827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westereng B, Ishida T, Vaaje-Kolstad G et al (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:e27807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Žifčáková L, Baldrian P (2012) Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecol 5:481–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Christakopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Muraleedharan, M.N., Rova, U., Christakopoulos, P. (2017). Lytic Polysaccharide Monooxygensases. In: Sani, R., Krishnaraj, R. (eds) Extremophilic Enzymatic Processing of Lignocellulosic Feedstocks to Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-54684-1_6

Download citation

Publish with us

Policies and ethics