PRNGs for Masking Applications and Their Mapping to Evolvable Hardware

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10146)


This paper proposes the use of evolutionary computation for the design and optimization of lightweight Pseudo Random Number Generators (PRNGs). In this work, we focus on PRNGs that are suitable for generating masks and secret shares. Such generators should be light-weight and have a high throughput with good statistical properties. As a proof-of-concept, we present three novel hardware architectures that have an increasing level of prediction resistance and an increasing level of reconfigurability at run-time. We evaluate the three architectures on Zynq, Virtex-6, and ASIC platforms and compare the occupied resources and the throughput of the obtained designs. Finally, we use the Spartan-6 platform for the evaluation of the masked implementation where the masks are obtained via our PRNG.


Block Cipher Hardware Architecture Modeling Attack Embed Processor Cartesian Genetic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi: 10.1007/3-540-48405-1_25 Google Scholar
  2. 2.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001). doi: 10.1007/3-540-44709-1_26 CrossRefGoogle Scholar
  3. 3.
    Rukhin, A. et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications (August 2008)Google Scholar
  4. 4.
    Killmann, W., Schindler, W.: A proposal for: functionality classes for random number generators (2011).
  5. 5.
    Clark, J.A., Jacob, J.L., Stepney, S., Maitra, S., Millan, W.: Evolving Boolean functions satisfying multiple criteria. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 246–259. Springer, Heidelberg (2002). doi: 10.1007/3-540-36231-2_20 CrossRefGoogle Scholar
  6. 6.
    Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong balanced Boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 489–499. Springer, Heidelberg (1998). doi: 10.1007/BFb0054148 Google Scholar
  7. 7.
    Picek, S., Ege, B., Papagiannopoulos, K., Batina, L., Jakobovic, D.: Optimality and beyond: the case of 4x4 S-boxes. In: 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 80–83 (2014)Google Scholar
  8. 8.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  9. 9.
    Miller, J.F. (ed.): Cartesian Genetic Programming. Natural Computing Series. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  10. 10.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). doi: 10.1007/978-3-540-46239-2_9 CrossRefGoogle Scholar
  11. 11.
    Lamenca-Martinez, C., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: Lamar: a new pseudorandom number generator evolved by means of genetic programming. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN IX 2006. LNCS, vol. 4193, pp. 850–859. Springer, Heidelberg (2006). doi: 10.1007/11844297_86 CrossRefGoogle Scholar
  12. 12.
    Picek, S., Sisejkovic, D., Rozic, V., Yang, B., Jakobovic, D., Mentens, N.: Evolving cryptographic pseudorandom number generators. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 613–622. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-45823-6_57 CrossRefGoogle Scholar
  13. 13.
    Torresen, J.: An evolvable hardware tutorial. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 821–830. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30117-2_83 CrossRefGoogle Scholar
  14. 14.
    Sekanina, L. (ed.): Evolvable Components: From Theory to Hardware Implementations. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  15. 15.
    Vašíček, Z., Sekanina, L.: Hardware accelerator of cartesian genetic programming with multiple fitness units. Comput. Inform. 29(6+), 1359–1371 (2012)Google Scholar
  16. 16.
    Dobai, R., Sekanina, L.: Image filter evolution on the Xilinx Zynq platform. In: 2013 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 164–171, June 2013Google Scholar
  17. 17.
    Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and fault analysis resistance in hardware through dynamic reconfiguration. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 346–362. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85053-3_22 CrossRefGoogle Scholar
  18. 18.
    Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23951-9_3 CrossRefGoogle Scholar
  19. 19.
    Sasdrich, P., Mischke, O., Moradi, A., Güneysu, T.: Side-channel protection by randomizing look-up tables on reconfigurable hardware. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 95–107. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-21476-4_7 CrossRefGoogle Scholar
  20. 20.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: GECCO, pp. 1135–1142. Morgan Kaufmann (1999)Google Scholar
  22. 22.
    Tian, X., Benkrid, K.: Mersenne twister random number generation on FPGA, CPU and GPU. In: NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2009, pp. 460–464, July 2009Google Scholar
  23. 23.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74735-2_31 CrossRefGoogle Scholar
  24. 24.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, report 2013/404 (2013).
  25. 25.
    Maene, P., Verbauwhede, I.: Single-cycle implementations of block ciphers. In: Güneysu, T., Leander, G., Moradi, A. (eds.) LightSec 2015. LNCS, vol. 9542, pp. 131–147. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-29078-2_8 CrossRefGoogle Scholar
  26. 26.
    Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order threshold implementation of the AES S-box. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 259–272. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31271-2_16 CrossRefGoogle Scholar
  28. 28.
    Guntur, H., Ishii, J., Satoh, A.: Side-channel attack user reference architecture board SAKURA-G. In: 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE), pp. 271–274 (2014)Google Scholar
  29. 29.
    Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). doi: 10.1007/3-540-45472-1_12 CrossRefGoogle Scholar
  30. 30.
    Coron, J., Naccache, D., Kocher, P.C.: Statistics and secret leakage. ACM Trans. Embed. Comput. Syst. 3(3), 492–508 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KU Leuven ESAT/COSIC and imecLeuven-HeverleeBelgium

Personalised recommendations