Advertisement

Evaluation of Chaotic Models

  • Lena C. Zuchowski
Chapter
Part of the New Directions in the Philosophy of Science book series (NDPS)

Abstract

I will introduce an analytic framework that conceptualizes the evaluation of vertical chaotic models as consisting of three steps: the determination of the chaotic conditional to be transferred from a model to a target system; the determination of the existence of chaos in the target system; and the evaluation of model faithfulness. Each step will be discussed in detail. I will also discuss the evaluation and investigative role of horizontal chaotic models.

Keywords

chaos model faithfulness conditions for chaos models in science 

Bibliography

  1. D. Aubin and A. Dahan Dalmedico. Writing the history of dynamical systems and chaos: Longue duree and revolution, disciplines and cultures. Historia Mathematica, 29: 273–339, 2002.CrossRefGoogle Scholar
  2. R. W. Batterman. Defining chaos. Philosophy of Science, 60: 43–66, 1993.CrossRefGoogle Scholar
  3. A. Bokulich. Horizontal models: From bakers to cats. Philosophy of Science, 70:609–627, 2003.CrossRefGoogle Scholar
  4. N. Chernov and R. Markarian. Chaotic Billiards. American Mathematical Society, New York, 2006.CrossRefGoogle Scholar
  5. J. M. Cushing. Integrodifferential Equations and Delay Models in Population Dynamics. Springer, Berlin, 1977.CrossRefGoogle Scholar
  6. P. Cvitanovic. Universality in Chaos. Adam Hilger, Bristol, 1986.Google Scholar
  7. R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Addison Wesley, Redwood City, 1989.Google Scholar
  8. J. Guckenheimer, G. Oster, and A. Ipaktchi. The dynamics of density dependent population models. Journal of Mathematical Biology, 4: 101–147, 1977.CrossRefGoogle Scholar
  9. M. P. Hassell, J. H. Lawton, and R. M. May. Patterns of dynamical behavior in single-species populations. Journal of Animal Ecology, 45: 471–486, 1976.CrossRefGoogle Scholar
  10. A. Hastings, C. L. Hom, S. Ellner, P. Turchin, and H. C. J. Godfrey. Chaos in ecology: Is mother nature a strange attractor? Annual Review of Ecology and Systematics, 24: 1–33, 1993.CrossRefGoogle Scholar
  11. M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations, Dynamical Systems and An Introduction to Chaos. Elsevier, Amsterdam, 2004.Google Scholar
  12. S. H. Kellert. A Philosophical evaluation of the chaos theory „revolution. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, 33–49, 1992.Google Scholar
  13. S. H. Kellert. In the Wake of Chaos. The University of Chicago Press, Chicago, 1993.CrossRefGoogle Scholar
  14. J. Koperski. Models, confirmation and chaos. Philosophy of Science, 65: 624–649, 1998.CrossRefGoogle Scholar
  15. M. Kot and W. M. Schaffer. Discrete-time growth-dispersal models. Mathematical Biosciences, 80: 109–136, 1986.CrossRefGoogle Scholar
  16. T.-Y. Li and J. A. Yorke. Period three implies chaos. The American Mathematical Monthly, 82: 985–992, 1975.CrossRefGoogle Scholar
  17. E. Lorenz. The Essence of Chaos. UCL Press, London, 1993.CrossRefGoogle Scholar
  18. R. M. May. Biological populations with non-overlapping generations: Stable points, stable Cycles, and chaos. Science, 15: 645–647, 1974.CrossRefGoogle Scholar
  19. R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261: 459–467, 1976.CrossRefGoogle Scholar
  20. R. M. May. Spatial chaos and its role in ecology and evolution. In S. A. Levin, editor, Frontiers in Mathematical Biology, pages 326–344. Springer, Berlin, 1994.CrossRefGoogle Scholar
  21. R. M. May and G. F. Osler. Bifurcations and dynamic complexity in simple ecological models. The American Naturalist, 110: 573–599, 1976.CrossRefGoogle Scholar
  22. Mark McEvoy. Experimental mathematics, computers and the a priori. Synthese, 190: 397–412, 2013.CrossRefGoogle Scholar
  23. E. Ott, T. Sauer, and J. A. Yorke. Coping with Chaos: Analysis of Chaotic Data and The Exploitation of Chaotic Systems. Wiley, New York, 1994.Google Scholar
  24. K. Palmer. Shadowing in Dynamical Systems: Theory and Application. Springer, Boston, 2000.CrossRefGoogle Scholar
  25. R. Pool. Is it chaos, or is it just noise? Science, 243: 25–28, 1989.CrossRefGoogle Scholar
  26. R. Robertson and A. Combs. Chaos Theory in Psychology and the Life Sciences. Lawrence Erlbaum, Hove, 1995.Google Scholar
  27. G. Schurz. Kinds of unpredictability in deterministic systems. In P. Weingartner and G. Schurz, editors, Law and Prediction in the Light of Chaos Research, pages 123–141. Springer, Heidelberg, 1996.CrossRefGoogle Scholar
  28. S. Smale. Differentially dynamical systems. i. diffeomorphisms. Bulletin of the American Mathematical Society, 73: 747–816, 1967.CrossRefGoogle Scholar
  29. S. Smale. Mathematical problems for the new century. The Mathematical Intelligencer, 20: 7–15, 1998.CrossRefGoogle Scholar
  30. P. Smith. Explaining Chaos. Cambridge University Press, Cambridge, 1998.CrossRefGoogle Scholar
  31. M. Suarez. Fictionals, conditionals and stellar astrophysics. International Studies in the Philosophie of Science, 27: 235–252, 2013.CrossRefGoogle Scholar
  32. A. A. Tsonis. Chaos: From Theory to Applications. Plenum Press, New York, 1992.CrossRefGoogle Scholar
  33. A. A. Tsonis and J. B. Elsner. Chaos, Strange attractors and weather. Bulletin of the American Meteorological Society, 70: 14–23, 1989.CrossRefGoogle Scholar
  34. W. Tucker. A rigorous ODE solver and Smale’s 14th problem. Foundations of Computational Mathematics, 2: 53–117, 2002.CrossRefGoogle Scholar
  35. M. Viana. What’s new on Lorenz strange attractors. The Mathematical Intelligencer, 22: 6–18, 2000.CrossRefGoogle Scholar
  36. C. Werndl. Justifying definitions in mathematics: Going beyond Lakatos. Philosophia Mathematica, 17: 313–340, 2009c.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Lena C. Zuchowski
    • 1
  1. 1.Fachbereich PhilosophieUniversität SalzburgSalzburgAustria

Personalised recommendations