Chaos Criteria and Definitions

  • Lena C. Zuchowski
Part of the New Directions in the Philosophy of Science book series (NDPS)


I will maintain that chaos definitions are twofold decomposable into combinations of five core criteria (determinism, transitivity, periodicity, aperiodicity and SDIC) and into different embodiments of these criteria. The different embodiments of each criterion and the relationships between different criteria will be discussed. I will then show that five prevalent definitions of chaos can be analysed in this compositional framework.


chaos definitions of chaos definitions in science 


  1. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimring. The analysis of observed data in physical systems. Reviews of Modern Physics, 65: 1331–1392, 1993.CrossRefGoogle Scholar
  2. K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos: An Introduction to Dynamical Systems. Springer, New York, 1997.CrossRefGoogle Scholar
  3. J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney’s definition of chaos. The American Mathematical Monthly, 99: 332–334, 1992.CrossRefGoogle Scholar
  4. R. W. Batterman. Defining chaos. Philosophy of Science, 60: 43–66, 1993.CrossRefGoogle Scholar
  5. A. Berger. Chaos and Chance: An Introduction to Stochastic Aspects of Dynamics. Walter de Gruyer, New York, 2001.Google Scholar
  6. M. Boshernitzan, G. Galpertin, T. Kruger, and S. Troubetzkoy. Periodic orbits are dense in rational polygons. Transactions of the American Mathematical Society, 350: 3523–3535, 1998.CrossRefGoogle Scholar
  7. N. Chernov and R. Markarian. Chaotic Billiards. American Mathematical Society, New York, 2006.CrossRefGoogle Scholar
  8. P. Cvitanovic. Universality in Chaos. Adam Hilger, Bristol, 1986.Google Scholar
  9. R. L. Devaney. An Introduction to Chaotic Dynamical Systems. Addison Wesley, Redwood City, 1989.Google Scholar
  10. J. Earman. A Primer on Determinism. Kluwer, Dordrecht, 1986.CrossRefGoogle Scholar
  11. R. Gonczi and C. Froeschle. The Lyapunov characteristic exponents as indicators of stochasticity in the restricted three-body problem. Celestial Mechanics, 25: 271–280, 1981.CrossRefGoogle Scholar
  12. A. Hájek. Interpretations of probability. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. 2012.Google Scholar
  13. A. Hastings, C. L. Hom, S. Ellner, P. Turchin, and H. C. J. Godfrey. Chaos in ecology: Is mother nature a strange attractor? Annual Review of Ecology and Systematics, 24: 1–33, 1993.CrossRefGoogle Scholar
  14. M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations, Dynamical Systems and An Introduction to Chaos. Elsevier, Amsterdam, 2004.Google Scholar
  15. K. Judd and L. Smith. Indistinguishable states II: The imperfect model scenario. Physica D, 151: 125–141, 2001.CrossRefGoogle Scholar
  16. K. Judd and L. Smith. Indistinguishable states: Perfect model scenario. Physica D, 196: 224–242, 2004.Google Scholar
  17. S. H. Kellert. In the Wake of Chaos. The University of Chicago Press, Chicago, 1993.CrossRefGoogle Scholar
  18. H. A Lauwerier. One-dimensional iterative maps. In Arun V. Holden, editor, Chaos, pages 39–57. Manchester University Press, Manchester, 1991.Google Scholar
  19. T.-Y. Li and J. A. Yorke. Period three implies chaos. The American Mathematical Monthly, 82: 985–992, 1975.CrossRefGoogle Scholar
  20. E. Lorenz. The Essence of Chaos. UCL Press, London, 1993.CrossRefGoogle Scholar
  21. S. Luzzatto, I. Melbourne, and F. Paccaut. The Lorenz attractor is mixing. Communications in Mathematical Physics, 260: 393–401, 2005.CrossRefGoogle Scholar
  22. R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261: 459–467, 1976.CrossRefGoogle Scholar
  23. R. M. May and G. F. Osler. Bifurcations and dynamic complexity in simple ecological models. The American Naturalist, 110: 573–599, 1976.CrossRefGoogle Scholar
  24. C. Mayo-Wilson. Structural chaos. Philosophy of Science, 82: 1236–1247, 2015.CrossRefGoogle Scholar
  25. E. Ott, T. Sauer, and J. A. Yorke. Coping with Chaos: Analysis of Chaotic Data and The Exploitation of Chaotic Systems. Wiley, New York, 1994.Google Scholar
  26. R. Robertson and A. Combs. Chaos Theory in Psychology and the Life Sciences. Lawrence Erlbaum, Hove, 1995.Google Scholar
  27. D. Ruelle. Chance and Chaos. Princeton University Press, Princeton, 1991.Google Scholar
  28. G. Schurz. Kinds of unpredictability in deterministic systems. In P. Weingartner and G. Schurz, editors, Law and Prediction in the Light of Chaos Research, pages 123–141. Springer, Heidelberg, 1996.CrossRefGoogle Scholar
  29. P. Smith. Explaining Chaos. Cambridge University Press, Cambridge, 1998.CrossRefGoogle Scholar
  30. M. A. Stone. Chaos, prediction and Laplacean determinism. American Philosophical Quarterly, 26: 123–131, 1989.Google Scholar
  31. M. Suarez. Fictionals, conditionals and stellar astrophysics. International Studies in the Philosophie of Science, 27: 235–252, 2013.CrossRefGoogle Scholar
  32. A. A. Tsonis. Chaos: From Theory to Applications. Plenum Press, New York, 1992.CrossRefGoogle Scholar
  33. C. Werndl. Are deterministic and indeterministic descriptions observationally equivalent. Studies of History and Philosophy of Modern Physics, 40: 232–242, 2009a.CrossRefGoogle Scholar
  34. C. Werndl. What are the new implications of chaos for unpredictability? The British Journal for the Philosophy of Science, 60: 195–220, 2009b.CrossRefGoogle Scholar
  35. C. Werndl. Justifying definitions in mathematics: Going beyond Lakatos. Philosophia Mathematica, 17: 313–340, 2009c.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Lena C. Zuchowski
    • 1
  1. 1.Fachbereich PhilosophieUniversität SalzburgSalzburgAustria

Personalised recommendations