Advertisement

Functional MRI

  • Geert-Jan Rutten
Chapter

Abstract

Functional neuroimaging techniques, first positron emission tomography (PET) and later functional MRI (fMRI), have revolutionized cognitive neuroscience. These tools have also greatly improved our understanding of how language is implemented in the brain. Almost from the beginning, fMRI was also applied as a tool for language mapping in surgical practice because of its obvious benefits: high-resolution whole-brain mapping without the need for invasive procedures. Other clinical applications that have been investigated, although less frequently, are the use of fMRI as a tool to help diagnose or understand diseases that lack clear neuroanatomical characteristics or as a predictor for language outcome after stroke (see Chap.  9).

References

  1. 1.
    Rutten GJ, Ramsey NF. The role of functional magnetic resonance imaging in brain surgery. Neurosurg Focus. 2010;28:E4.PubMedCrossRefGoogle Scholar
  2. 2.
    Bandettini PA, Wong EC, Hinks RS, et al. Time course EPI of human brain function during task activation. Magn Reson Med. 1992;25:390–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A. 1992;89:5951–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89:5675–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Raichle ME, Gusnard DA. Appraising the brain’s energy budget. Proc Natl Acad Sci U S A. 2002;99:10237–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Malonek D, Grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996;272:551–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Fox PT. The coupling controversy. Neuroimage. 2012;62:594–601.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ojemann GA. Effect of cortical and subcortical stimulation on human language and verbal memory. Res Publ Assoc Res Nerv Ment Dis. 1988;66:101–15.PubMedGoogle Scholar
  9. 9.
    Logothetis NK, Pauls J, Augath M, et al. Neurophysiological investigations of the basis of the fMRI signal. Nature. 2001;412:150–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Crone NE, Miglioretti DL, Gordon B, Lesser RP. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain. 1998;121:2301–15.PubMedCrossRefGoogle Scholar
  11. 11.
    Sinai A, Bowers CW, Crainiceanu CM, et al. Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain. 2005;128(Pt 7):1556–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Duffau H. Brain mapping: from neural basis of cognition to surgical applications. Wien: Springer; 2011.CrossRefGoogle Scholar
  13. 13.
    Moonen CT, Bandettini PA. Functional MRI. Berlin: Springer; 2000.CrossRefGoogle Scholar
  14. 14.
    Binder JR. fMRI of language systems: methods and applications. In: Faro SH, Mohamed FB, editors. Functional MRI: basic principles and clinical applications. New York: Springer; 2006. p. 245–77.CrossRefGoogle Scholar
  15. 15.
    Poeppel D. A critical review of PET studies of phonological processing. Brain Lang. 1996;55:317–51. Discussion 352PubMedCrossRefGoogle Scholar
  16. 16.
    Friston KJ, Price CJ, Fletcher P, et al. The trouble with cognitive subtraction. Neuroimage. 1996;4:97–104.PubMedCrossRefGoogle Scholar
  17. 17.
    Gallese V, Lakoff G. The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cogn Neuropsychol. 2005;22:455–79.PubMedCrossRefGoogle Scholar
  18. 18.
    Rutten GJ, Ramsey NF, van Rijen PC, van Veelen CW. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang. 2002;80:421–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci. 2001;2:685–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Rutten GJ, van Rijen PC, van Veelen CW, Ramsey NF. Language area localization with three-dimensional functional magnetic resonance imaging matches intrasulcal electrostimulation in Broca’s area. Ann Neurol. 1999;46:405–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Mikl M, Marecek R, Hlustik P, et al. Effects of spatial smoothing on fMRI group inferences. Magn Reson Imaging. 2008;26:490–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A. 2016;113(28):7900–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Vul E, Harris C, Winkielman P, Pashler H. Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspect Psychol Sci. 2009;4:274–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith K. Brain imaging: fMRI 2.0. Nature. 2012;484:24–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Fried I, Nenov VI, Ojemann SG, Woods RP. Functional MR and PET imaging of rolandic and visual cortices for neurosurgical planning. J Neurosurg. 1995;83:854–61.PubMedCrossRefGoogle Scholar
  26. 26.
    Mueller WM, Yetkin FZ, Hammeke TA, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39:515–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Raichle ME. Human brain, functional organisation, altered states of consciousness and the assessment of brain death. Pontifical Academy of Sciences, Scripta Varia 110. 2007.Google Scholar
  28. 28.
    Lin A-L, Gao J-H, Fox PT. Neurovascular and neurometabolic uncoupling in the visual cortex. In: Molotchnikoff S, Rouat J, editors. Visual cortex—current status and perspectives. Rijeka: InTech; 2012.Google Scholar
  29. 29.
    Mosso A. Ueber den kreislauf des blutes im menschlichen gehirn: untersuchungen. Verlag von Veit & Comp.; 1881Google Scholar
  30. 30.
    Millett D. Hans Berger: from psychic energy to the EEG. Perspect Biol Med. 2001;44:522–42.PubMedCrossRefGoogle Scholar
  31. 31.
    Schiller F. Paul Broca: founder of French anthropology, explorer of the brain. New York: Oxford University Press; 1992.Google Scholar
  32. 32.
    Cohen L, Smith MJ, Leroux-Hugon V. Paul Broca’s thermometric crown. J Neurol Neurosurg Psychiatry. 2004;75:32.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Roy CS, Sherrington CS. On the regulation of the blood supply of the brain. J Physiol. 1890;11:85–108.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Shallice T. From neuropsychology to mental structure. booksgooglecom. 1988.Google Scholar
  35. 35.
    Caramazza A. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn. 1986;5:41–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Halai AD, Woollams AM, Lambon Ralph MA. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex. 2017;86:275–89.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Petersen SE, Fox PT, Posner MI, et al. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.PubMedCrossRefGoogle Scholar
  38. 38.
    McClelland JL, Rumelhart DE, Hinton GE. The appeal of parallel distributed processing. Cambridge: MIT Press; 1986.Google Scholar
  39. 39.
    LaBerge D, Samuels SJ. Toward a theory of automatic information processing in reading. Cogn Psychol. 1974;6:293–323.CrossRefGoogle Scholar
  40. 40.
    Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage. 2012;62:816–47.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Haxby JV, Grady CL, Ungerleider LG, Horwitz B. Mapping the functional neuroanatomy of the intact human brain with brain work imaging. Neuropsychologia. 1991;29:539–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Raichle ME. Memory mechanisms in the processing of words and word-like symbols. Ciba Found Symp. 1991;163:198–204. Discussion 204PubMedGoogle Scholar
  43. 43.
    Wise R, Hadar U, Howard D, Patterson K. Language activation studies with positron emission tomography. Ciba Found Symp. 1991;163:218–28. Discussion 228PubMedGoogle Scholar
  44. 44.
    Steinmetz H, Seitz RJ. Functional anatomy of language processing: neuroimaging and the problem of individual variability. Neuropsychologia. 1991;29:1149–61.PubMedCrossRefGoogle Scholar
  45. 45.
    Petersen SE, Fiez JA. The processing of single words studied with positron emission tomography. Annu Rev Neurosci. 1993;16:509–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Binder JR, Frost JA, Hammeke TA, et al. Human brain language areas identified by functional magnetic resonance imaging. J Neurosci. 1997;17:353–62.PubMedGoogle Scholar
  47. 47.
    Demonet JF, Chollet F, Ramsay S, et al. The anatomy of phonological and semantic processing in normal subjects. Brain. 1992;115:1753–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Wise R, Chollet F, Hadar U, et al. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain. 1991;114:1803–17.PubMedCrossRefGoogle Scholar
  49. 49.
    Price CJ. The anatomy of language: contributions from functional neuroimaging. J Anat. 2000;197(Pt 3):335–59.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bookheimer SY. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci. 2002;25:151–88.PubMedCrossRefGoogle Scholar
  51. 51.
    Démonet JF, Thierry G, Cardebat D. Renewal of the neurophysiology of language: functional neuroimaging. Physiol Rev. 2005;85:49–95.PubMedCrossRefGoogle Scholar
  52. 52.
    Vigneau M, Beaucousin V, Herve PY, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30:1414–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Poldrack RA, Wagner AD, Prull MW, et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage. 1999;10:15–35.PubMedCrossRefGoogle Scholar
  54. 54.
    Binder JR. The Wernicke area: modern evidence and a reinterpretation. Neurology. 2015;85:2170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wise RJ, Scott SK, Blank SC, et al. Separate neural subsystems within ‘Wernicke’s area. Brain. 2001;124:83–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Dronkers NF, Wilkins DP, Van Valin RD, et al. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92:145–77.PubMedCrossRefGoogle Scholar
  57. 57.
    Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8:393–402.PubMedCrossRefGoogle Scholar
  58. 58.
    Gage N, Hickok G. Multiregional cell assemblies, temporal binding and the representation of conceptual knowledge in cortex: a modern theory by a “classical” neurologist, Carl Wernicke. Cortex. 2005;41:823–32.PubMedCrossRefGoogle Scholar
  59. 59.
    Alamia A, Solopchuk O, D’Ausilio A, et al. Disruption of Broca’s area alters higher-order chunking processing during perceptual sequence learning. J Cogn Neurosci. 2016;28:402–17.PubMedCrossRefGoogle Scholar
  60. 60.
    Hamberger MJ, Goodman RR, Perrine K, Tamny T. Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology. 2001;56:56–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Roux FE, Lubrano V, Lauwers-Cances V, et al. Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain. 2004;127:1796–810.PubMedCrossRefGoogle Scholar
  62. 62.
    Lubrano V, Roux FE, Demonet JF. Writing-specific sites in frontal areas: a cortical stimulation study. J Neurosurg. 2004;101:787–98.PubMedCrossRefGoogle Scholar
  63. 63.
    Giussani C, Roux FE, Lubrano V, et al. Review of language organisation in bilingual patients: what can we learn from direct brain mapping? Acta Neurochir. 2007;149:1109–16. Discussion 1116PubMedCrossRefGoogle Scholar
  64. 64.
    Rutten GJ, Ramsey NF. Functional neuroimaging in neurosurgical practice. In: Duffau H, editor. Brain mapping: from neural basis of cognition to surgical applications. Berlin: Springer; 2011. p. 207–27.CrossRefGoogle Scholar
  65. 65.
    Koechlin E, Jubault T. Broca’s area and the hierarchical organization of human behavior. Neuron. 2006;50:963–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Fadiga L, Craighero L, D’Ausilio A. Broca’s area in language, action, and music. Ann N Y Acad Sci. 2009;1169:448–58.PubMedCrossRefGoogle Scholar
  67. 67.
    Kunert R, Willems RM, Casasanto D, et al. Music and language syntax interact in Broca’s area: an fMRI study. PLoS One. 2015;10:e0141069.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Eickhoff SB, Heim S, Zilles K, Amunts K. A systems perspective on the effective connectivity of overt speech production. Philos Trans A Math Phys Eng Sci. 2009;367:2399–421.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hirsch J, Moreno DR, Kim KH. Interconnected large-scale systems for three fundamental cognitive tasks revealed by functional MRI. J Cogn Neurosci. 2001;13:389–405.PubMedCrossRefGoogle Scholar
  70. 70.
    Indefrey P, Levelt WJ. The spatial and temporal signatures of word production components. Cognition. 2004;92:101–44.PubMedCrossRefGoogle Scholar
  71. 71.
    Indefrey P, WJML. The neural correlates of language processing. In: Gazzaniga M, editor. The new cognitive neurosciences. Cambridge: MIT Press; 2000.Google Scholar
  72. 72.
    Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage. 1997;5:261–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Ramsey NF, Sommer IE, Rutten GJ, Kahn RS. Combined analysis of language tasks in fMRI improves assessment of hemispheric dominance for language functions in individual subjects. Neuroimage. 2001;13:719–33.PubMedCrossRefGoogle Scholar
  74. 74.
    Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;28:597–613.PubMedCrossRefGoogle Scholar
  75. 75.
    Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14:277–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Mesulam M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage. 2012;62:2182–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Friederici AD. Towards a neural basis of auditory sentence processing. Trends Cogn Sci. 2002;6:78–84.PubMedCrossRefGoogle Scholar
  78. 78.
    Poeppel D, Hickok G. Towards a new functional anatomy of language. Cognition. 2004;92:1–12.PubMedCrossRefGoogle Scholar
  79. 79.
    Lubrano V, Draper L, Roux FE. What makes surgical tumor resection feasible in Broca’s area? Insights into intraoperative brain mapping. Neurosurgery. 2010;66:868–75. Discussion 875PubMedCrossRefGoogle Scholar
  80. 80.
    Nieto-Castanon A, Fedorenko E. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses. Neuroimage. 2012;63:1646–69.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rutten GJ, Ramsey NF, van Rijen PC, et al. Development of a functional MRI protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol. 2002;51:350–60.PubMedCrossRefGoogle Scholar
  82. 82.
    Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance imaging. Ann N Y Acad Sci. 2010;1191:133–55.PubMedCrossRefGoogle Scholar
  83. 83.
    Rombouts SA, Barkhof F, Hoogenraad FG, et al. Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magn Reson Imaging. 1998;16:105–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Benson RR, FitzGerald DB, LeSueur LL, et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology. 1999;52:798–809.PubMedCrossRefGoogle Scholar
  85. 85.
    McGonigle DJ, Howseman AM, Athwal BS, et al. Variability in fMRI: an examination of intersession differences. Neuroimage. 2000;11:708–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Jansma JM, Ramsey NF, Rutten GJ. A comparison of brain activity associated with language production in brain tumor patients with left and right sided language laterality. J Neurosurg Sci. 2015;59(4):327–35.PubMedGoogle Scholar
  87. 87.
    Pujol J, Deus J, Losilla JM, Capdevila A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999;52:1038–43.PubMedCrossRefGoogle Scholar
  88. 88.
    Springer JA, Binder JR, Hammeke TA, et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain. 1999;122:2033–46.PubMedCrossRefGoogle Scholar
  89. 89.
    Janecek JK, Swanson SJ, Sabsevitz DS, et al. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia. 2013;54:314–22.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Knecht S, Floel A, Drager B, et al. Degree of language lateralization determines susceptibility to unilateral brain lesions. Nat Neurosci. 2002;5:695–9.PubMedGoogle Scholar
  91. 91.
    Ross ED. Affective prosody and the aprosodias. In: Mesulam MM, editor. 2 Principles of behavioral and cognitive neurology (6). New York: Oxford University Press; 2000. p. 316–31.Google Scholar
  92. 92.
    Binder JR. Use of fMRI language lateralization for quantitative prediction of naming and verbal memory outcome in left temporal lobe epilepsy surgery. In: Ulmer S, Jansen O, editors. fMRI: basics and clinical applications. Berlin: Springer; 2010.Google Scholar
  93. 93.
    Thiel A, Habedank B, Winhuisen L, et al. Essential language function of the right hemisphere in brain tumor patients. Ann Neurol. 2005;57:128–31.PubMedCrossRefGoogle Scholar
  94. 94.
    Saur D, Lange R, Baumgaertner A, et al. Dynamics of language reorganization after stroke. Brain. 2006;129:1371–84.PubMedCrossRefGoogle Scholar
  95. 95.
    Seghier ML. Laterality index in functional MRI: methodological issues. Magn Reson Imaging. 2008;26:594–601.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bauer PR, Reitsma JB, Houweling BM, et al. Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review. J Neurol Neurosurg Psychiatry. 2014;85:581–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Baxendale S, Thompson PJ, Duncan JS. The role of the Wada test in the surgical treatment of temporal lobe epilepsy: an international survey. [letter]. Epilepsia. 2008;49(4):715–20. Discussion 720PubMedCrossRefGoogle Scholar
  98. 98.
    Rutten GJ, Ramsey NF, van Rijen PC, et al. fMRI-determined language lateralization in patients with unilateral or bilateral language dominance according to the Wada test. Neuroimage. 2002;17:447–60.PubMedCrossRefGoogle Scholar
  99. 99.
    FitzGerald DB, Cosgrove GR, Ronner S, et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. Am J Neuroradiol. 1997;18:1529–39.PubMedGoogle Scholar
  100. 100.
    Kuchcinski G, Mellerio C, Pallud J, et al. Three-tesla functional MR language mapping: Comparison with direct cortical stimulation in gliomas. Neurology. 2015;84(6):560–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Fernandez Coello A, Moritz-Gasser S, Martino J, et al. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg. 2013;119:1380–94.PubMedCrossRefGoogle Scholar
  102. 102.
    Giussani C, Roux FE, Ojemann J, et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66:113–20.PubMedCrossRefGoogle Scholar
  103. 103.
    Sabsevitz DS, Swanson SJ, Hammeke TA, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60:1788–92.PubMedCrossRefGoogle Scholar
  104. 104.
    Janecek JK, Swanson SJ, Sabsevitz DS, et al. Naming outcome prediction in patients with discordant Wada and fMRI language lateralization. Epilepsy Behav. 2013;27:399–403.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hart MG, Price SJ, Suckling J. Connectome analysis for pre-operative brain mapping in neurosurgery. Br J Neurosurg. 2016;30:506–17.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16:159–72.PubMedCrossRefGoogle Scholar
  107. 107.
    James W. The principles of psychology. Harvard UP, Cambridge, MA. 1890.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Geert-Jan Rutten
    • 1
  1. 1.Department of NeurosurgerySt Elisabeth-Tweesteden HospitalTilburgThe Netherlands

Personalised recommendations