Functional Summarization

  • Sourav S. BhowmickEmail author
  • Boon-Siew Seah
Part of the Computational Biology book series (COBO, volume 24)


In the preceding chapter, we have discussed an array of techniques for ppi network clustering. In this chapter, we explore recent work in ppi network summarization, a problem that is closely related to clustering.


Subspace Cluster Graph Cluster Functional Cluster Representative Function Preceding Chapter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.-S. Seah, S.S. Bhowmick, C.F. Dewey, H. Yu, FUSE: a profit maximization approach for functional summarization of biological networks. BMC Bioinf. 13(3), S10 (2012)CrossRefGoogle Scholar
  2. 2.
    C.H. Wu, R. Apweiler, A. Bairoch, D.A. Natale, W.C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M.J. Martin, R. Mazumder, C. O’Donovan, N. Redaschi, B. Suzek, The universal protein resource (UniProt): an expanding universe of protein information. Nucl. Acids Res. 34, 87–91 (2006)Google Scholar
  3. 3.
    S. Kerrien, Y. Alam-Faruque, B. Aranda, I. Bancarz, A. Bridge, C. Derow, E. Dimmer, M. Feuermann, A. Friedrichsen, R. Huntley, C. Kohler, J. Khadake, C. Leroy, A. Liban, C. Lieftink, L. Montecchi-Palazzi, S. Orchard, J. Risse, K. Robbe, B. Roechert, D. Thorneycroft, Y. Zhang, R. Apweiler, H. Hermjakob, IntAct–open source resource for molecular interaction data. Nucl. Acids Res. 35, D561–565 (2007)Google Scholar
  4. 4.
    E.I. Boyle, S. Weng, J. Gollub, H. Jin, D. Botstein, J.M. Cherry, G. Sherlock, GO::termfinder–open source software for accessing Gene Ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics (Oxford, England) 20, 3710–3715 (2004)Google Scholar
  5. 5.
    G.D. Bader, C.W.V. Hogue, An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf. 4, 2 (2003)CrossRefGoogle Scholar
  6. 6.
    I. Dhillon, Y. Guan, B. Kulis, A fast kernel-based multilevel algorithm for graph clustering, in Proceedings of the eleventh ACM SIGKDD international conference on knowledge discovery in data mining (ACM, 2005), p. 634Google Scholar
  7. 7.
    C.G. Rivera, R. Vakil, J.S. Bader, NeMo: network module identification in cytoscape. BMC Bioinf. 11(1), S61 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Kingsford, S. Navlakha, Exploring biological network dynamics with ensembles of graph partitions. in Pacific Symposium Biocomputing (2010), pp. 166–177Google Scholar
  9. 9.
    Y. Zhou, H. Cheng, J. Yu, Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2(1), 718–729 (2009)Google Scholar
  10. 10.
    N. Wang, S. Parthasarathy, K.-L. Tan, A.K.H. Tung, CSV, in Proceedings of the 2008 ACM SIGMOD international conference on management of data - SIGMOD’08 (ACM Press, New York, USA, 2008), p. 445Google Scholar
  11. 11.
    A.-C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.-M. Michon, C.-M. Cruciat, M. Remor, C. Höfert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.-A. Heurtier, R.R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, G. Superti-Furga, Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Rissanen, Modeling by shortest data description? Automatica 14, 465–471 (1978)CrossRefzbMATHGoogle Scholar
  13. 13.
    C. Huttenhower, E.M. Haley, M.A. Hibbs, V. Dumeaux, D.R. Barrett, H.A. Coller, O.G. Troyanskaya, Exploring the human genome with functional maps exploring the human genome with functional maps. Genome Res. 1093–1106 (2009)Google Scholar
  14. 14.
    G. Palla, I. Derényi, I. Farkas, T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  15. 15.
    B. Adamcsek, G. Palla, I.J. Farkas, I. Derényi, T. Vicsek, CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics (Oxford, England) 22, 1021–1023 (2006)Google Scholar
  16. 16.
    Y. Tian, R.A. Hankins, J.M. Patel, Efficient aggregation for graph summarization, in Proceedings of the 2008 ACM SIGMOD international conference on management of data - SIGMOD’08 (ACM Press, New York, USA), p. 567Google Scholar
  17. 17.
    Z. Xu, Y. Ke, Y. Wang, H. Cheng, J. Cheng, A model-based approach to attributed graph clustering, in Proceedings of the 2012 international conference on management of data - SIGMOD’12 (ACM Press, New York, USA), p. 505Google Scholar
  18. 18.
    S. Berchtold, C. Böhm, D.A. Keim, H.-P. Kriegel, A cost model for nearest neighbor search in high-dimensional data space, in Symposium on Principles of Database Systems (1997)Google Scholar
  19. 19.
    H. Kriegel, P. Kroger, M. Renz, S. Wurst, A generic framework for efficient subspace clustering of high-dimensional data (No. Icdm, IEEE, 2005)Google Scholar
  20. 20.
    D. Koutra, U. Kang, et al., VoG: summarizing and understanding large graphs, in Proceedings of SDM (2014)Google Scholar
  21. 21.
    N. Zhang, Y. Tian, J.M. Patel, Discovery-driven graph summarization, in Proceedings of ICDE (2010), pp. 880891Google Scholar
  22. 22.
    K. LeFevre, E. Terzi, Grass: graph structure summarization. SDM (2010), pp. 454465Google Scholar
  23. 23.
    P.K. Chan, M.D.F. Schlag, J.Y. Zien, Spectral K -way Ratio-Cut Partitioning and Clustering (ACM Press, New York, 1993)CrossRefGoogle Scholar
  24. 24.
    S. Khuller, A. Moss, J.S. Naor, The budgeted maximum coverage problem. Inf. Process. Lett. 70, (1) (1999)Google Scholar
  25. 25.
    T.S. Keshava Prasad, R. Goel, K. Kandasamy, S. Keerthikumar, S. Kumar, S. Mathivanan, D. Telikicherla, R. Raju, B. Shafreen, A. Venugopal, L. Balakrishnan, A. Marimuthu, S. Banerjee, D.S. Somanathan, A. Sebastian, S. Rani, S. Ray, C.J. Harrys Kishore, S. Kanth, M. Ahmed, M.K. Kashyap, R. Mohmood, Y.L. Ramachandra, V. Krishna, B.A. Rahiman, S. Mohan, P. Ranganathan, S. Ramabadran, R. Chaerkady, A. Pandey, Human protein reference database-2009 update. Nucl. Acids Res. 37, D767–D772 (2009)Google Scholar
  26. 26.
    H.W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B. Morgenstern, M. Münsterkötter, S. Rudd, B. Weil, MIPS: a database for genomes and protein sequences. Nucl. Acids Res. 30, 31–34 (2002)CrossRefGoogle Scholar
  27. 27.
    N.J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A.P. Tikuisis, T. Punna, J.M. Peregrín-Alvarez, M. Shales, X. Zhang, M. Davey, M.D. Robinson, A. Paccanaro, J.E. Bray, A. Sheung, B. Beattie, D.P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M.M. Canete, J. Vlasblom, S. Wu, C. Orsi, S.R. Collins, S. Chandran, R. Haw, J.J. Rilstone, K. Gandi, N.J. Thompson, G. Musso, P. St Onge, S. Ghanny, M.H.Y. Lam, G. Butland, A.M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J.S. Weissman, C.J. Ingles, T.R. Hughes, J. Parkinson, M. Gerstein, S.J. Wodak, A. Emili, J.F. Greenblatt, Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)CrossRefGoogle Scholar
  28. 28.
    D. Crabtree, P. Andreae, X. Gao, QC4: a clustering evaluation method, in Proceedings of the 11th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD’07) (2007), pp. 59–70Google Scholar
  29. 29.
    M. Koyutürk, W. Szpankowski, A. Grama, Assessing significance of connectivity and conservation in protein interaction networks. J. Comput. Biol. 14(6), 747–764 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. Ben-Hur, A. Elisseeff, I. Guyon, A stability based method for discovering structure in clustered data, in Biocomputing 2002 - Proceedings of the Pacific Symposium (World Scientific Publishing Co. Pte. Ltd., Singapore, 2001), pp. 6–17Google Scholar
  31. 31.
    K.J. De Vos, A.J. Grierson, S. Ackerley, C.C.J. Miller, Role of axonal transport in neurodegenerative diseases. Annu. Rev. Neurosci. 31, 151–173 (2008)CrossRefGoogle Scholar
  32. 32.
    D.J. Owen, B.M. Collins, Vesicle transport: a new player in APP trafficking. Curr. Biol. 20, R413–R415 (2010)CrossRefGoogle Scholar
  33. 33.
    M.T. Lin, M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006)CrossRefGoogle Scholar
  34. 34.
    D.J. Selkoe, Folding proteins in fatal ways. Nature 426, 900–904 (2003)CrossRefGoogle Scholar
  35. 35.
    K.V. Kuchibhotla, S.T. Goldman, C.R. Lattarulo, H.-Y. Wu, B.T. Hyman, B.J. Bacskai, Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 214–225 (2008)CrossRefGoogle Scholar
  36. 36.
    K. Herrup, Y. Yang, Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007)CrossRefGoogle Scholar
  37. 37.
    R.A.C.M. Boonen, P. van Tijn, D. Zivkovic, Wnt signaling in Alzheimer’s disease: up or down, that is the question. Ageing Res. Rev. 8, 71–82 (2009)Google Scholar
  38. 38.
    B.V. Zlokovic, Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci. 28, 202–208 (2005)CrossRefGoogle Scholar
  39. 39.
    B.W. Doble, GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003)CrossRefGoogle Scholar
  40. 40.
    B. De Strooper, W. Annaert, Where notch and wnt signaling meet. the presenilin hub. J. Cell Biol. 152, F17–F20 (2001)CrossRefGoogle Scholar
  41. 41.
    A. Patil, H. Nakamura, Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett. 580, 2041–2045 (2006)CrossRefGoogle Scholar
  42. 42.
    N. Nelson, N. Perzov, A. Cohen, K. Hagai, V. Padler, H. Nelson, The cellular biology of proton-motive force generation by V-ATPases. J. Exp. Biol. 203, 89–95 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations