Skip to main content

Approaches for Generation of Lymphatic Vessels

  • Reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Abstract

The lymphatic system plays an important role in fluid homeostasis, immune cell trafficking, and fat absorption. Due to injury, diseases, or surgery, the lymphatic system can be disrupted which often leads to lymphedema in the adjacent extremities. Tissue engineering is an emerging research field dealing with the substitution of nonfunctional parts of the human body with in vitro engineered tissues. Regenerative approaches try to stimulate the formation of functional tissues in situ. During the last few decades, the construction of blood vessels in vitro to supply engineered tissues with nutrients gained more and more interest. However, research in the field of lymphatic development stayed behind, but several approaches for lymphatics engineering were developed so far. Lymphatic endothelial cells can be seeded to scaffold materials and afterwards implanted into sites of disrupted lymphatic vasculature. Several regenerative approaches describe the stimulation of lymph vessel growth in vivo. Although the methods developed so far hold promise for the clinical use of engineered lymphatics, the optimal parameters for lymphatic engineering remain a challenge for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 439.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS, Rockson SG, Mehrara BJ (2010) Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair. Am J Pathol 177(6):3202–3214

    Article  Google Scholar 

  • Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D et al (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362

    Article  Google Scholar 

  • Banerji S, Ni J, Wang S-X, Clasper S, Jeffrey S, Tammi R, Jones M, Jackson DG (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801

    Article  Google Scholar 

  • Baumeister RGH, Seifert J, Liebich H, Wiebecke B, Gabka C, Goldmann U (1985) The rat model as precursor of clinical lymph vessel transplantation. In: Thiede A, Deltz E, Engemann R, Hamelmann H (eds) Microsurgical models in rats for transplantation research. Springer, Berlin/Heidelberg, pp 113–116. http://link.springer.com/chapter/10.1007/978-3-642-61657-0_18

    Chapter  Google Scholar 

  • Baumeister R, Mayo W, Notohamiprodjo M, Wallmichrath J, Springer S, Frick A (2015) Microsurgical lymphatic vessel transplantation. J Reconstr Microsurg 32(01):034–041

    Article  Google Scholar 

  • Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-α9 is required for Fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17(2):175–186

    Article  Google Scholar 

  • Björndahl M, Cao R, Johan Nissen L, Clasper S, Johnson LA, Xue Y, Zhou Z, Jackson D, Hansen AJ, Cao Y (2005) Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo. Proc Natl Acad Sci 102(43):15593–15598

    Article  Google Scholar 

  • Boardman KC, Swartz MA (2003) Interstitial flow as a guide for lymphangiogenesis. Circ Res 92(7):801–808

    Article  Google Scholar 

  • Bonvin C, Overney J, Shieh AC, Brandon Dixon J, Swartz MA (2010) A multichamber fluidic device for 3D cultures under interstitial flow with live imaging: development, characterization, and applications. Biotechnol Bioeng 105(5):982–991

    Google Scholar 

  • Breier G (2005) Lymphangiogenesis in regenerating tissue. Circ Res 96(11):1132–1134

    Article  Google Scholar 

  • Broggi MAS, Schmaler M, Lagarde N, Rossi SW (2014) Isolation of murine lymph node stromal cells. J Vis Exp 19(90):e51803

    Google Scholar 

  • Bruyère F, Noël A (2010) Lymphangiogenesis: in vitro and in vivo models. FASEB J 24(1):8–21

    Article  Google Scholar 

  • Cao Y (2005) Direct role of PDGF-BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle 4(2):231–233

    Article  MathSciNet  Google Scholar 

  • Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94(5):664–670

    Article  Google Scholar 

  • Carlson JA (2014) Lymphedema and subclinical lymphostasis (microlymphedema) facilitate cutaneous infection, inflammatory dermatoses, and neoplasia: a locus minoris resistentiae. Clin Dermatol 32(5):599–615

    Article  Google Scholar 

  • Chang LK, Garcia-Cardeña G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J, Kaipainen A (2004) Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci USA 101(32):11658–11663

    Article  Google Scholar 

  • Chikly B (1997) Who discovered the lymphatic system? Lymphology 30(4):186–193

    Google Scholar 

  • Clavin NW, Avraham T, Fernandez J, Sv D, Ma S, Chaudhry A, Bj M (2008) TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295(5):H2113–H2127

    Article  Google Scholar 

  • Conrad C, Niess H, Huss R, Huber S, von Luettichau I, Nelson PJ, Ott HC, Jauch K-W, Bruns CJ (2009) Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo. Circulation 119(2):281–289

    Article  Google Scholar 

  • Cueni LN, Detmar M (2006) New insights into the molecular control of the lymphatic vascular system and its role in disease. J Investig Dermatol 126(10):2167–2177

    Article  Google Scholar 

  • Cursiefen C, Lu C, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Reza Dana M, Wiegand SJ, Wayne Streilein J (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113(7):1040–1050

    Article  Google Scholar 

  • Dai TT, Jiang ZH, Li SL, Zhou GD, Kretlow JD, Cao WG, Liu W, Cao YL (2010) Reconstruction of lymph vessel by lymphatic endothelial cells combined with polyglycolic acid scaffolds: a pilot study. J Biotechnol 150(1):182–189

    Article  Google Scholar 

  • Davis TA, Stojadinovic A, Anam K, Amare M, Naik S, Peoples GE, Tadaki D, Elster EA (2009) Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury*. Int Wound J 6(1):11–21

    Article  Google Scholar 

  • DiMaio TA, Wentz BL, Lagunoff M (2016) Isolation and characterization of circulating lymphatic endothelial colony forming cells. Exp Cell Res 340(1):159–169

    Article  Google Scholar 

  • Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, Armant M, Turley SJ (2011) Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Immunol Tolerance 2:35

    Google Scholar 

  • Földi M, Strössenreuther RHK (2004) Physiological lymph drainage. Foundations of manual lymph drainage: 28–38

    Google Scholar 

  • Furia JP, Juliano PJ, Wade AM, Schaden W, Mittermayr R (2010) Shock wave therapy compared with intramedullary screw fixation for nonunion of proximal fifth metatarsal metaphyseal-diaphyseal fractures. J Bone Joint Surg 92(4):846–854

    Article  Google Scholar 

  • Garrafa E, Trainini L, Benetti A, Saba E, Fezzardi L, Lorusso B, Borghetti P et al (2005) Isolation, purification, and heterogeneity of human lymphatic endothelial cells from different tissues. Lymphology 38(4):159–166

    Google Scholar 

  • Gibot L, Galbraith T, Kloos B, Das S, Lacroix DA, Auger FA, Skobe M (2016) Cell-based approach for 3D reconstruction of lymphatic capillaries in vitro reveals distinct functions of HGF and VEGF-C in lymphangiogenesis. Biomaterials 78(February):129–139

    Article  Google Scholar 

  • Goldman J, Le TX, Skobe M, Swartz MA (2005) Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 96(11):1193–1199

    Article  Google Scholar 

  • Goldman J, Rutkowski JM, Shields JD, Pasquier MC, Cui Y, Schmökel HG, Willey S, Hicklin DJ, Pytowski B, Swartz MA (2007) Cooperative and redundant roles of VEGFR-2 and VEGFR-3 signaling in adult lymphangiogenesis. FASEB J 21(4):1003–1012

    Article  Google Scholar 

  • Haraldsen G, Rugtveit J, Kvale D, Scholz T, Muller WA, Hovig T, Brandtzaeg P (1995) Isolation and longterm culture of human intestinal microvascular endothelial cells. Gut 37(2):225–234

    Article  Google Scholar 

  • Haupt G (1997) Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol 158(1):4–11

    Article  Google Scholar 

  • Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119

    Article  Google Scholar 

  • Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  Google Scholar 

  • Helm C-LE, Zisch A, Swartz MA (2007) Engineered blood and lymphatic capillaries in 3-D VEGF-fibrin-collagen matrices with interstitial flow. Biotechnol Bioeng 96(1):167–176

    Article  Google Scholar 

  • Hirakawa S, Hong Y-K, Harvey N, Schacht V, Matsuda K, Libermann T, Detmar M (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162(2):575–586

    Article  Google Scholar 

  • Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678

    Article  Google Scholar 

  • Jahnsen FL, Brandtzaeg P, Haye R, Haraldsen G (1997) Expression of functional VCAM-1 by cultured nasal polyp-derived microvascular endothelium. Am J Pathol 150(6):2113–2123

    Google Scholar 

  • Jeltsch M, Tammela T, Alitalo K, Wilting J (2003) Genesis and pathogenesis of lymphatic vessels. Cell Tissue Res 314(1):69–84

    Article  Google Scholar 

  • Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen V-M, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via a disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971

    Article  Google Scholar 

  • Jiang Z, Hu X, Kretlow JD, Liu N (2010) Harvesting and cryopreservation of lymphatic endothelial cells for lymphatic tissue engineering. Cryobiology 60(2):177–183

    Article  Google Scholar 

  • Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M (2005) Hepatocyte growth factor promotes lymphatic vessel formation and function. EMBO J 24(16):2885–2895

    Article  Google Scholar 

  • Kesler CT, Liao S, Munn LL, Padera TP (2013) Lymphatic vessels in health and disease. Wiley Interdiscip Rev Syst Biol Med 5(1):111–124

    Article  Google Scholar 

  • Kiefer F, Schulte-Merker S (2014) Introductory remarks. In: Kiefer F, Schulte-Merker S (eds) Developmental aspects of the lymphatic vascular system, Advances in anatomy, embryology and cell biology, vol 214. Springer, Vienna, pp 1–4. http://link.springer.com/chapter/10.1007/978-3-7091-1646-3_1

    Chapter  Google Scholar 

  • Kilarski WW, Muchowicz A, Wachowska M, Mężyk-Kopeć R, Golab J, Swartz MA, Nowak-Sliwinska P (2014) Optimization and regeneration kinetics of lymphatic-specific photodynamic therapy in the mouse dermis. Angiogenesis 17(2):347–357

    Article  Google Scholar 

  • Kim IG, Lee JY, Lee DS, Kwon JY, Hwang JH (2013) Extracorporeal shock wave therapy combined with vascular endothelial growth factor-C hydrogel for lymphangiogenesis. J Vasc Res 50(2):124–133

    Article  Google Scholar 

  • Kriehuber E, Breiteneder-Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D, Maurer D (2001) Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194(6):797–808

    Article  Google Scholar 

  • Kubo M, Li T-S, Kamota T, Ohshima M, Shirasawa B, Hamano K (2010) Extracorporeal shock wave therapy ameliorates secondary lymphedema by promoting lymphangiogenesis. J Vasc Surg 52(2):429–434

    Article  Google Scholar 

  • Lee S-J, Park C, Lee JY, Kim S, Kwon PJ, Kim W, Jeon YH, Lee E, Yoon Y-S (2015) Generation of pure lymphatic endothelial cells from human pluripotent stem cells and their therapeutic effects on wound repair. Sci Rep 5(June):11019

    Article  Google Scholar 

  • Lievens PC (1991) The effect of a combined HeNe and I.R. laser treatment on the regeneration of the lymphatic system during the process of wound healing. Lasers Med Sci 6(2):193–199

    Article  Google Scholar 

  • Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, Cyster JG, Luther SA (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8(11):1255–1265

    Article  Google Scholar 

  • Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199

    Article  Google Scholar 

  • Marino D, Luginbühl J, Scola S, Meuli M, Reichmann E (2014) Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6(221):221ra14–221ra14

    Article  Google Scholar 

  • Marsee DK, Pinkus GS, Hornick JL (2009) Podoplanin (D2-40) is a highly effective marker of follicular dendritic cells. Appl Immunohistochem Mol Morphol 17(2):102–107

    Article  Google Scholar 

  • Mittermayr R, Hartinger J, Antonic V, Meinl A, Pfeifer S, Stojadinovic A, Schaden W, Redl H (2011) Extracorporeal shock wave therapy (ESWT) minimizes ischemic tissue necrosis irrespective of application time and promotes tissue revascularization by stimulating angiogenesis. Ann Surg 253(5):1024–1032

    Article  Google Scholar 

  • Mittermayr R, Antonic V, Hartinger J, Kaufmann H, Redl H, Téot L, Stojadinovic A, Schaden W (2012) Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy. Wound Repair Regen 20(4):456–465

    Google Scholar 

  • Murphy K, Weaver C (2016) Janeway’s immunobiology, 9th edn. Garland Science, New York

    Book  Google Scholar 

  • Ng CP, Helm C-LE, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68(3):258–264

    Article  Google Scholar 

  • Nisato RE, Harrison JA, Buser R, Orci L, Rinsch C, Montesano R, Dupraz P, Pepper MS (2004) Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol 165(1):11–24

    Article  Google Scholar 

  • Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno R-i, Hasegawa M, Nishikawa S-i, Sueishi K (2009) VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 297(5):H1685–H1696

    Article  Google Scholar 

  • Paavonen K, Puolakkainen P, Jussila L, Jahkola T, Alitalo K (2000) Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am J Pathol 156(5):1499–1504

    Article  Google Scholar 

  • Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412

    Article  Google Scholar 

  • Pegu A, Qin S, Fallert Junecko BA, Nisato RE, Pepper MS, Reinhart TA (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180(5):3399–3405

    Article  Google Scholar 

  • Quick CM, Venugopal AM, Gashev AA, Zawieja DC, Stewart RH (2007) Intrinsic pump-conduit behavior of lymphangions. Am J Physiol Regul Integr Comp Physiol 292(4):R1510–R1518

    Article  Google Scholar 

  • Rohringer S, Holnthoner W, Hackl M, Weihs AM, Rünzler D, Skalicky S, Karbiener M et al (2014) Molecular and cellular effects of in vitro shockwave treatment on lymphatic endothelial cells. PLoS One 9(12):e114806

    Article  Google Scholar 

  • Sabine A, Agalarov Y, Hajjami HM-E, Jaquet M, Hägerling R, Pollmann C, Bebber D et al (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22(2):430–445

    Article  Google Scholar 

  • Saito Y, Nakagami H, Morishita R, Takami Y, Kikuchi Y, Hayashi H, Nishikawa T et al (2006) Transfection of human hepatocyte growth factor gene ameliorates secondary lymphedema via promotion of lymphangiogenesis. Circulation 114(11):1177–1184

    Article  Google Scholar 

  • Schacht V, Ramirez MI, Hong Y-K, Hirakawa S, Feng D, Harvey N, Williams M et al (2003) T1|[alpha]|/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22(14):3546–3556

    Article  Google Scholar 

  • Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong Y-K, Detmar M (2005) Up-Regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166(3):913–921

    Article  Google Scholar 

  • Schweighofer B, Rohringer S, Pröll J, Holnthoner W (2015) A microarray analysis of two distinct lymphatic endothelial cell populations. Genomics Data 4(June):115–118

    Article  Google Scholar 

  • Serizawa F, Ito K, Matsubara M, Sato A, Shimokawa H, Satomi S (2011) Extracorporeal shock wave therapy induces therapeutic lymphangiogenesis in a rat model of secondary lymphoedema. Eur J Vasc Endovasc Surg 42(2):254–260

    Article  Google Scholar 

  • Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2):192–198

    Article  Google Scholar 

  • Szuba A, Rockson SG (1998) Lymphedema: classification, diagnosis and therapy. Vasc Med 3(2):145–156

    Article  Google Scholar 

  • Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  Google Scholar 

  • Tammela T, Saaristo A, Holopainen T, Lyytikkä J, Kotronen A, Pitkonen M, Abo-Ramadan U, Ylä-Herttuala S, Petrova TV, Alitalo K (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13(12):1458–1466

    Article  Google Scholar 

  • Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schönbein GW (2001) Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15(10):1711–1717

    Article  Google Scholar 

  • Weitman E, Cuzzone D, Mehrara BJ (2013) Tissue engineering and regeneration of lymphatic structures. Future Oncol 9(9):1365–1374

    Article  Google Scholar 

  • Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513

    Article  Google Scholar 

  • Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological Regulation and roles in inflammation and cancer. Physiol Rev 92(3):1005–1060

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabrina Rohringer or Wolfgang Holnthoner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rohringer, S., Schaupper, M., Holnthoner, W. (2021). Approaches for Generation of Lymphatic Vessels. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-54586-8_8

Download citation

Publish with us

Policies and ethics