cAMP Compartmentalisation and Hypertrophy of the Heart: ‘Good’ Pools of cAMP and ‘Bad’ Pools of cAMP Coexist in the Same Cardiac Myocyte

Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Pathological growth of cardiomyocytes (hypertrophy) is a major determinant of heart failure, a leading medical cause of mortality worldwide. Initially, cardiac hypertrophy is a compensatory response aimed at increasing cardiac output. However, prolonged cardiac hypertrophy progresses to contractile dysfunction, cardiac decompensation, and finally to heart failure. Although chronic elevation of cardiac cAMP leads to pathologic sequelae, enhancement of particular aspects of cAMP/PKA signalling benefits the failing heart, suggesting that different components of this pathway may have different consequences on cardiac hypertrophy and failure. The finding that cAMP signalling is compartmentalised and that distinct, spatially segregated pools of cAMP mediate different functional effects in the heart may provide a rationale for what appear to be contrasting effects of this pathway on cardiac physiology and pathophysiology. In this chapter, we review some of the evidence in support of compartmentalisation of cAMP/PKA signalling, and we summarise recent findings indicating that distinct pools of cAMP, under the control of different phosphodiesterases, have opposing effects on cardiac myocytes hypertrophic growth. The relevance of these findings for the potential development of innovative approaches to reverse the course of ventricular remodelling is also briefly discussed.

Keywords

cAMP Compartmentalisation Phosphodiesterases Cardiac hypertrophy 

Notes

Acknowledgements

This study was supported by the British Heart Foundation (PG/10/75/28537 and RG/12/3/29423) and the BHF Centre of Research Excellence, Oxford (RE/08/004) to M. Z.

Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

  1. Abi-Gerges A, Richter W, Lefebvre F, Mateo P, Varin A, Heymes C, Samuel JL, Lugnier C, Conti M, Fischmeister R, Vandecasteele G (2009) Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res 105(8):784–792. doi: 10.1161/CIRCRESAHA.109.197947 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694–697PubMedCrossRefGoogle Scholar
  3. Antos CL, Frey N, Marx SO, Reiken S, Gaburjakova M, Richardson JA, Marks AR, Olson EN (2001) Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a. Circ Res 89(11):997–1004PubMedCrossRefGoogle Scholar
  4. Aye TT, Soni S, van Veen TA, van der Heyden MA, Cappadona S, Varro A, de Weger RA, de Jonge N, Vos MA, Heck AJ, Scholten A (2012) Reorganized PKA-AKAP associations in the failing human heart. J Mol Cell Cardiol 52(2):511–518. doi: 10.1016/j.yjmcc.2011.06.003 PubMedCrossRefGoogle Scholar
  5. Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA, Olson EN (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195(3):403–415. doi: 10.1083/jcb.201105063 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD (2003) Beta-arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 100(3):940–945PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 40(10):2023–2039. doi: 10.1016/j.biocel.2008.02.020 PubMedCrossRefGoogle Scholar
  8. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58(3):488–520PubMedCrossRefGoogle Scholar
  9. Berrera M, Dodoni G, Monterisi S, Pertegato V, Zamparo I, Zaccolo M (2008) A toolkit for real-time detection of cAMP: insights into compartmentalized signaling. Handb Exp Pharmacol 186:285–298. doi: 10.1007/978-3-540-72843-6_12 CrossRefGoogle Scholar
  10. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. doi: 10.1038/415198a PubMedCrossRefGoogle Scholar
  11. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49. doi: 10.1146/annurev.physiol.70.113006.100455 PubMedCrossRefGoogle Scholar
  12. Bristow MR (2000) Beta-adrenergic receptor blockade in chronic heart failure. Circulation 101(5):558–569PubMedCrossRefGoogle Scholar
  13. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307(4):205–211. doi: 10.1056/NEJM198207223070401 PubMedCrossRefGoogle Scholar
  14. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59(3):297–309PubMedCrossRefGoogle Scholar
  15. Brunton LL, Hayes JS, Mayer SE (1979) Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280(5717):78–80PubMedCrossRefGoogle Scholar
  16. Brunton LL, Hayes JS, Mayer SE (1981) Functional compartmentation of cyclic AMP and protein kinase in heart. Adv Cyclic Nucleotide Res 14:391–397PubMedGoogle Scholar
  17. Burgers PP, Ma Y, Margarucci L, Mackey M, van der Heyden MA, Ellisman M, Scholten A, Taylor SS, Heck AJ (2012) A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane. J Biol Chem 287(52):43789–43797. doi: 10.1074/jbc.M112.395970 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Burmeister BT, Wang L, Gold MG, Skidgel RA, O'Bryan JP, Carnegie GK (2015) Protein kinase a (PKA) phosphorylation of Shp2 protein inhibits its phosphatase activity and modulates ligand specificity. J Biol Chem 290(19):12058–12067. doi: 10.1074/jbc.M115.642983 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Buxton IL, Brunton LL (1983) Compartments of cyclic AMP and protein kinase in mammalian cardiomyocytes. J Biol Chem 258(17):10233–10239PubMedGoogle Scholar
  20. Carlson CR, Lygren B, Berge T, Hoshi N, Wong W, Tasken K, Scott JD (2006) Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor. J Biol Chem 281(30):21535–21545. doi: 10.1074/jbc.M603223200 PubMedCrossRefGoogle Scholar
  21. Carr DW, Hausken ZE, Fraser ID, Stofko-Hahn RE, Scott JD (1992) Association of the type II cAMP-dependent protein kinase with a human thyroid RII-anchoring protein. Cloning and characterization of the RII-binding domain. J Biol Chem 267(19):13376–13382PubMedGoogle Scholar
  22. Carr DW, Stofko-Hahn RE, Fraser ID, Bishop SM, Acott TS, Brennan RG, Scott JD (1991) Interaction of the regulatory subunit (RII) of cAMP-dependent protein kinase with RII-anchoring proteins occurs through an amphipathic helix binding motif. J Biol Chem 266(22):14188–14192PubMedGoogle Scholar
  23. Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113(18):2221–2228. doi: 10.1161/CIRCULATIONAHA.105.599241 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS (2007) Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci U S A 104(52):20990–20995. doi: 10.1073/pnas.0710527105 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cohn JN, Goldstein SO, Greenberg BH, Lorell BH, Bourge RC, Jaski BE, Gottlieb SO, McGrew F 3rd, DeMets DL, White BG (1998) A dose-dependent increase in mortality with vesnarinone among patients with severe heart failure. Vesnarinone trial investigators. N Engl J Med 339(25):1810–1816. doi: 10.1056/NEJM199812173392503 PubMedCrossRefGoogle Scholar
  26. Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. Circulation 100(22):2210–2212PubMedCrossRefGoogle Scholar
  27. Corbin JD, Keely SL (1977) Characterization and regulation of heart adenosine 3':5'-monophosphate-dependent protein kinase isozymes. J Biol Chem 252(3):910–918PubMedGoogle Scholar
  28. Corbin JD, Sugden PH, Lincoln TM, Keely SL (1977) Compartmentalization of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252(11):3854–3861PubMedGoogle Scholar
  29. Cowley AJ, Skene AM (1994) Treatment of severe heart failure: quantity or quality of life? A trial of enoximone. Enoximone Investigators Br Heart J 72(3):226–230PubMedCrossRefGoogle Scholar
  30. de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (1998) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396(6710):474–477PubMedCrossRefGoogle Scholar
  31. Dessauer CW (2009) Adenylyl cyclase—A-kinase anchoring protein complexes: the next dimension in cAMP signaling. Mol Pharmacol 76(5):935–941. doi: 10.1124/mol.109.059345 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X, Houslay MD, Baillie GS, Zaccolo M (2008) Protein kinase a type I and type II define distinct intracellular signaling compartments. Circ Res 103(8):836–844. doi: 10.1161/CIRCRESAHA.108.174813 PubMedCrossRefGoogle Scholar
  33. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518PubMedPubMedCentralCrossRefGoogle Scholar
  34. Domanski MJ, Krause-Steinrauf H, Massie BM, Deedwania P, Follmann D, Kovar D, Murray D, Oren R, Rosenberg Y, Young J, Zile M, Eichhorn E, Investigators B (2003) A comparative analysis of the results from 4 trials of beta-blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J Card Fail 9(5):354–363PubMedCrossRefGoogle Scholar
  35. Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 96(12):7059–7064PubMedPubMedCentralCrossRefGoogle Scholar
  36. Enns LC, Bible KL, Emond MJ, Ladiges WC (2010) Mice lacking the Cbeta subunit of PKA are resistant to angiotensin II-induced cardiac hypertrophy and dysfunction. BMC Res Notes 3:307. doi: 10.1186/1756-0500-3-307 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Farah AE (1983) Glucagon and the circulation. Pharmacol Rev 35(3):181–217PubMedGoogle Scholar
  38. Fields LA, Koschinski A, Zaccolo M (2015) Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell Signal. doi: 10.1016/j.cellsig.2015.10.003 PubMedGoogle Scholar
  39. Fink MA, Zakhary DR, Mackey JA, Desnoyer RW, Apperson-Hansen C, Damron DS, Bond M (2001) AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 88(3):291–297PubMedCrossRefGoogle Scholar
  40. Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74(6):1290–1302PubMedCrossRefGoogle Scholar
  41. Frey N, Richardson JA, Olson EN (2000) Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc Natl Acad Sci U S A 97(26):14632–14637. doi: 10.1073/pnas.260501097 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gao MH, Lai NC, Roth DM, Zhou J, Zhu J, Anzai T, Dalton N, Hammond HK (1999) Adenylyl cyclase increases responsiveness to catecholamine stimulation in transgenic mice. Circulation 99(12):1618–1622PubMedCrossRefGoogle Scholar
  43. Gesellchen F, Stangherlin A, Surdo N, Terrin A, Zoccarato A, Zaccolo M (2011) Measuring spatiotemporal dynamics of cyclic AMP signaling in real-time using FRET-based biosensors. Methods Mol Biol 746:297–316. doi: 10.1007/978-1-61779-126-0_16 PubMedCrossRefGoogle Scholar
  44. Gold MG, Lygren B, Dokurno P, Hoshi N, McConnachie G, Tasken K, Carlson CR, Scott JD, Barford D (2006) Molecular basis of AKAP specificity for PKA regulatory subunits. Mol Cell 24(3):383–395. doi: 10.1016/j.molcel.2006.09.006 PubMedCrossRefGoogle Scholar
  45. Ha CH, Kim JY, Zhao J, Wang W, Jhun BS, Wong C, Jin ZG (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 107(35):15467–15472. doi: 10.1073/pnas.1000462107 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hayes JS, Bowling N, King KL, Boder GB (1982) Evidence for selective regulation of the phosphorylation of myocyte proteins by isoproterenol and prostaglandin E1. Biochim Biophys Acta 714(1):136–142PubMedCrossRefGoogle Scholar
  47. Hayes JS, Brunton LL (1982) Functional compartments in cyclic nucleotide action. J Cyclic Nucleotide Res 8(1):1–16PubMedGoogle Scholar
  48. Hayes JS, Brunton LL, Brown JH, Reese JB, Mayer SE (1979) Hormonally specific expression of cardiac protein kinase activity. Proc Natl Acad Sci U S A 76(4):1570–1574PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255(11):5113–5119PubMedGoogle Scholar
  50. Huang LJ, Durick K, Weiner JA, Chun J, Taylor SS (1997) D-AKAP2, a novel protein kinase a anchoring protein with a putative RGS domain. Proc Natl Acad Sci U S A 94(21):11184–11189PubMedPubMedCentralCrossRefGoogle Scholar
  51. Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP, Kudej RK, Wight DC, Wagner TE, Ishikawa Y, Homcy CJ, Vatner SF (1996) Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ Res 78(4):517–524PubMedCrossRefGoogle Scholar
  52. Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci U S A 93(1):295–299PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kapiloff MS, Piggott LA, Sadana R, Li J, Heredia LA, Henson E, Efendiev R, Dessauer CW (2009) An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem 284(35):23540–23546. doi: 10.1074/jbc.M109.030072 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Keely SL (1977) Activation of cAMP-dependent protein kinase without a corresponding increase in phosphorylase activity. Res Commun Chem Pathol Pharmacol 18(2):283–290PubMedGoogle Scholar
  55. Kerfant BG, Zhao D, Lorenzen-Schmidt I, Wilson LS, Cai S, Chen SR, Maurice DH, Backx PH (2007) PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res 101(4):400–408. doi: 10.1161/CIRCRESAHA.107.156422 PubMedCrossRefGoogle Scholar
  56. Kinderman FS, Kim C, von Daake S, Ma Y, Pham BQ, Spraggon G, Xuong NH, Jennings PA, Taylor SS (2006) A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase. Mol Cell 24(3):397–408. doi: 10.1016/j.molcel.2006.09.015 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lai NC, Roth DM, Gao MH, Fine S, Head BP, Zhu J, McKirnan MD, Kwong C, Dalton N, Urasawa K, Roth DA, Hammond HK (2000) Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation 102(19):2396–2401PubMedCrossRefGoogle Scholar
  58. Lefkowitz RJ, Rockman HA, Koch WJ (2000) Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation 101(14):1634–1637PubMedCrossRefGoogle Scholar
  59. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lipskaia L, Defer N, Esposito G, Hajar I, Garel MC, Rockman HA, Hanoune J (2000) Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase. Circ Res 86(7):795–801PubMedCrossRefGoogle Scholar
  61. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93(10):896–906. doi: 10.1161/01.RES.0000102042.83024.CA PubMedCrossRefGoogle Scholar
  62. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109(3):366–398PubMedCrossRefGoogle Scholar
  63. Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, Lorenz D, Wiesner B, Rosenthal W, Zaccolo M, Tasken K, Klussmann E (2007) AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8(11):1061–1067. doi: 10.1038/sj.embor.7401081 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase a/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280(39):33178–33189PubMedCrossRefGoogle Scholar
  65. Makarewich CA, Correll RN, Gao H, Zhang H, Yang B, Berretta RM, Rizzo V, Molkentin JD, Houser SR (2012) A caveolae-targeted L-type Ca(2) + channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674. doi: 10.1161/CIRCRESAHA.111.264028 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Markou T, Hadzopoulou-Cladaras M, Lazou A (2004) Phenylephrine induces activation of CREB in adult rat cardiac myocytes through MSK1 and PKA signaling pathways. J Mol Cell Cardiol 37(5):1001–1011. doi: 10.1016/j.yjmcc.2004.08.002 PubMedCrossRefGoogle Scholar
  67. Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, Hol WG, Beavo JA (2002) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A 99(20):13260–13265PubMedPubMedCentralCrossRefGoogle Scholar
  68. Martins TJ, Mumby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257(4):1973–1979PubMedGoogle Scholar
  69. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13(4):290–314. doi: 10.1038/nrd4228 PubMedPubMedCentralCrossRefGoogle Scholar
  70. McConnell BK, Popovic Z, Mal N, Lee K, Bautista J, Forudi F, Schwartzman R, Jin JP, Penn M, Bond M (2009) Disruption of protein kinase A interaction with A-kinase-anchoring proteins in the heart in vivo: effects on cardiac contractility, protein kinase a phosphorylation, and troponin I proteolysis. J Biol Chem 284(3):1583–1592. doi: 10.1074/jbc.M806321200 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Means CK, Lygren B, Langeberg LK, Jain A, Dixon RE, Vega AL, Gold MG, Petrosyan S, Taylor SS, Murphy AN, Ha T, Santana LF, Tasken K, Scott JD (2011) An entirely specific type I A-kinase anchoring protein that can sequester two molecules of protein kinase a at mitochondria. Proc Natl Acad Sci U S A 108(48):E1227–E1235. doi: 10.1073/pnas.1107182108 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mehel H, Emons J, Vettel C, Wittkopper K, Seppelt D, Dewenter M, Lutz S, Sossalla S, Maier LS, Lechene P, Leroy J, Lefebvre F, Varin A, Eschenhagen T, Nattel S, Dobrev D, Zimmermann WH, Nikolaev VO, Vandecasteele G, Fischmeister R, El-Armouche A (2013) Phosphodiesterase-2 is up-regulated in human failing hearts and blunts beta-adrenergic responses in cardiomyocytes. J Am Coll Cardiol 62(17):1596–1606. doi: 10.1016/j.jacc.2013.05.057 PubMedCrossRefGoogle Scholar
  73. Metrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc'h F (2008) Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res 102(8):959–965. doi: 10.1161/CIRCRESAHA.107.164947 PubMedCrossRefGoogle Scholar
  74. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ (1994) Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 264(5158):582–586PubMedCrossRefGoogle Scholar
  75. Mokni W, Keravis T, Etienne-Selloum N, Walter A, Kane MO, Schini-Kerth VB, Lugnier C (2010) Concerted regulation of cGMP and cAMP phosphodiesterases in early cardiac hypertrophy induced by angiotensin II. PLoS One 5(12):e14227. doi: 10.1371/journal.pone.0014227 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res 95(1):67–75PubMedCrossRefGoogle Scholar
  78. Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD, Zaccolo M (2006) Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ Res 98(2):226–234PubMedCrossRefGoogle Scholar
  79. Morel E, Marcantoni A, Gastineau M, Birkedal R, Rochais F, Garnier A, Lompre AM, Vandecasteele G, Lezoualc'h F (2005) cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res 97(12):1296–1304. doi: 10.1161/01.RES.0000194325.31359.86 PubMedCrossRefGoogle Scholar
  80. Movsesian MA (2004) Altered cAMP-mediated signalling and its role in the pathogenesis of dilated cardiomyopathy. Cardiovasc Res 62(3):450–459. doi: 10.1016/j.cardiores.2004.01.035 PubMedCrossRefGoogle Scholar
  81. Movsesian MA, Smith CJ, Krall J, Bristow MR, Manganiello VC (1991) Sarcoplasmic reticulum-associated cyclic adenosine 5'-monophosphate phosphodiesterase activity in normal and failing human hearts. J Clin Invest 88(1):15–19. doi: 10.1172/JCI115272 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Muller FU, Boknik P, Knapp J, Linck B, Luss H, Neumann J, Schmitz W (2001) Activation and inactivation of cAMP-response element-mediated gene transcription in cardiac myocytes. Cardiovasc Res 52(1):95–102PubMedCrossRefGoogle Scholar
  83. Nagayama T, Hsu S, Zhang M, Koitabashi N, Bedja D, Gabrielson KL, Takimoto E, Kass DA (2009) Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol 53(2):207–215. doi: 10.1016/j.jacc.2008.08.069 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nakano SJ, Sucharov J, Van R, Cecil M, Nunley K, Wickers S, Karimpur-Fard A, Stauffer BL, Miyamoto SD, Sucharov CC (2016) Cardiac adenylyl cyclase and phosphodiesterase expression profiles vary by age, disease, and chronic phosphodiesterase inhibitor treatment. J Card Fail. doi: 10.1016/j.cardfail.2016.07.429 PubMedPubMedCentralGoogle Scholar
  85. Nichols CB, Rossow CF, Navedo MF, Westenbroek RE, Catterall WA, Santana LF, McKnight GS (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107(6):747–756. doi: 10.1161/CIRCRESAHA.109.216127 PubMedCrossRefGoogle Scholar
  86. Nikolaev VO, Bunemann M, Hein L, Hannawacker A, Lohse MJ (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279(36):37215–37218PubMedCrossRefGoogle Scholar
  87. Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99(10):1084–1091. doi: 10.1161/01.RES.0000250046.69918.d5 PubMedCrossRefGoogle Scholar
  88. Nikolaev VO, Lohse MJ (2006) Monitoring of cAMP synthesis and degradation in living cells. Physiology 21:86–92. doi: 10.1152/physiol.00057.2005 PubMedCrossRefGoogle Scholar
  89. Nikolaev VO, Moshkov A, Lyon AR, Miragoli M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE, Gorelik J (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653–1657. doi: 10.1126/science.1185988 PubMedCrossRefGoogle Scholar
  90. Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF, Ishikawa Y (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci U S A 100(17):9986–9990. doi: 10.1073/pnas.1733772100 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ostrom RS, Gregorian C, Drenan RM, Xiang Y, Regan JW, Insel PA (2001) Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J Biol Chem 276(45):42063–42069. doi: 10.1074/jbc.M105348200 PubMedCrossRefGoogle Scholar
  92. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE study research group. N Engl J Med 325(21):1468–1475. doi: 10.1056/NEJM199111213252103 PubMedCrossRefGoogle Scholar
  93. Patel HH, Murray F, Insel PA (2008) G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol 186:167–184. doi: 10.1007/978-3-540-72843-6_7 CrossRefGoogle Scholar
  94. Pidoux G, Witczak O, Jarnaess E, Myrvold L, Urlaub H, Stokka AJ, Kuntziger T, Tasken K (2011) Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 30(21):4371–4386. doi: 10.1038/emboj.2011.365 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5(12):1176–1180PubMedPubMedCentralCrossRefGoogle Scholar
  96. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O'Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E, Trial R (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309(12):1268–1277. doi: 10.1001/jama.2013.2024 PubMedCrossRefGoogle Scholar
  97. Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J Gen Physiol 116(2):147–161PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rich TC, Tse TE, Rohan JG, Schaack J, Karpen JW (2001) In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J Gen Physiol 118(1):63–78PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rochais F, Abi-Gerges A, Horner K, Lefebvre F, Cooper DM, Conti M, Fischmeister R, Vandecasteele G (2006) A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 98(8):1081–1088PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rochais F, Vandecasteele G, Lefebvre F, Lugnier C, Lum H, Mazet JL, Cooper DM, Fischmeister R (2004) Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels. J Biol Chem 279(50):52095–52105PubMedCrossRefGoogle Scholar
  101. Roth DM, Bayat H, Drumm JD, Gao MH, Swaney JS, Ander A, Hammond HK (2002) Adenylyl cyclase increases survival in cardiomyopathy. Circulation 105(16):1989–1994PubMedCrossRefGoogle Scholar
  102. Roth DM, Gao MH, Lai NC, Drumm J, Dalton N, Zhou JY, Zhu J, Entrikin D, Hammond HK (1999) Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99(24):3099–3102PubMedCrossRefGoogle Scholar
  103. Ruppelt A, Mosenden R, Gronholm M, Aandahl EM, Tobin D, Carlson CR, Abrahamsen H, Herberg FW, Carpen O, Tasken K (2007) Inhibition of T cell activation by cyclic adenosine 5'-monophosphate requires lipid raft targeting of protein kinase a type I by the A-kinase anchoring protein ezrin. J Immunol 179(8):5159–5168PubMedCrossRefGoogle Scholar
  104. Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275(52):41447–41457. doi: 10.1074/jbc.M006951200 PubMedCrossRefGoogle Scholar
  105. Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571. doi: 10.1146/annurev.physiol.59.1.551 PubMedCrossRefGoogle Scholar
  106. Salloum F, Yin C, Xi L, Kukreja RC (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92(6):595–597. doi: 10.1161/01.RES.0000066853.09821.98 PubMedCrossRefGoogle Scholar
  107. Saucerman JJ, Zhang J, Martin JC, Peng LX, Stenbit AE, Tsien RY, McCulloch AD (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci U S A 103(34):12923–12928. doi: 10.1073/pnas.0600137103 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271(28):16526–16534PubMedCrossRefGoogle Scholar
  109. Sheridan CM, Heist EK, Beals CR, Crabtree GR, Gardner P (2002) Protein kinase a negatively modulates the nuclear accumulation of NF-ATc1 by priming for subsequent phosphorylation by glycogen synthase kinase-3. J Biol Chem 277(50):48664–48676PubMedCrossRefGoogle Scholar
  110. Sin YY, Edwards HV, Li X, Day JP, Christian F, Dunlop AJ, Adams DR, Zaccolo M, Houslay MD, Baillie GS (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50(5):872–883. doi: 10.1016/j.yjmcc.2011.02.006 PubMedCrossRefGoogle Scholar
  111. Skroblin P, Grossmann S, Schafer G, Rosenthal W, Klussmann E (2010) Mechanisms of protein kinase a anchoring. Int Rev Cell Mol Biol 283:235–330. doi: 10.1016/S1937-6448(10)83005-9 PubMedCrossRefGoogle Scholar
  112. Soni S, Scholten A, Vos MA, van Veen TA (2014) Anchored protein kinase a signalling in cardiac cellular electrophysiology. J Cell Mol Med 18(11):2135–2146. doi: 10.1111/jcmm.12365 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE, Maier LS, Hasenfuss G, Nikolaev VO (2015) In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 6:6965. doi: 10.1038/ncomms7965 PubMedCrossRefGoogle Scholar
  114. Stangherlin A, Gesellchen F, Zoccarato A, Terrin A, Fields LA, Berrera M, Surdo NC, Craig MA, Smith G, Hamilton G, Zaccolo M (2011) cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ Res 108(8):929–939. doi: 10.1161/CIRCRESAHA.110.230698 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Stangherlin A, Koschinski A, Terrin A, Zoccarato A, Jiang H, Fields LA, Zaccolo M (2014) Analysis of compartmentalized cAMP: a method to compare signals from differently targeted FRET reporters. Methods Mol Biol 1071:59–71. doi: 10.1007/978-1-62703-622-1_5 PubMedCrossRefGoogle Scholar
  116. Steinberg SF, Brunton LL (2001) Compartmentation of G protein-coupled signaling pathways in cardiac myocytes. Annu Rev Pharmacol Toxicol 41:751–773. doi: 10.1146/annurev.pharmtox.41.1.751 PubMedCrossRefGoogle Scholar
  117. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222PubMedCrossRefGoogle Scholar
  118. Terrin A, Monterisi S, Stangherlin A, Zoccarato A, Koschinski A, Surdo NC, Mongillo M, Sawa A, Jordanides NE, Mountford JC, Zaccolo M (2012) PKA and PDE4D3 anchoring to AKAP9 provides distinct regulation of cAMP signals at the centrosome. J Cell Biol 198(4):607–621. doi: 10.1083/jcb.201201059 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Timofeyev V, Myers RE, Kim HJ, Woltz RL, Sirish P, Heiserman JP, Li N, Singapuri A, Tang T, Yarov-Yarovoy V, Yamoah EN, Hammond HK, Chiamvimonvat N (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 112(12):1567–1576. doi: 10.1161/CIRCRESAHA.112.300370 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Uretsky BF, Jessup M, Konstam MA, Dec GW, Leier CV, Benotti J, Murali S, Herrmann HC, Sandberg JA (1990) Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared with placebo. Enoximone Multicenter Trial Group Circulation 82(3):774–780PubMedGoogle Scholar
  121. van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, van der Velden J, Stienen GJ, Laarman GJ, Somsen A, Verheugt FW, Niessen HW, Paulus WJ (2012) Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126(7):830–839. doi: 10.1161/CIRCULATIONAHA.111.076075 PubMedCrossRefGoogle Scholar
  122. Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, Onuffer J, Jin SL, Conti M (2001) Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276(14):11189–11198PubMedCrossRefGoogle Scholar
  123. Vettel C, Lindner M, Dewenter M, Lorenz K, Schanbacher C, Riedel M, Lämmle S, Meinecke S, Mason FE, Sossalla S, Geerts A, Hoffmann M, Wunder F, Brunner FJ, Wieland T, Mehel H, Karam S, Lechêne P, Leroy J, Vandecasteele G, Wagner M, Fischmeister R, El-Armouche A (2016) Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction. Circ Res. CIRCRESAHA.116.310069. [Epub ahead of print]Google Scholar
  124. Vila Petroff MG, Egan JM, Wang X, Sollott SJ (2001) Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res 89(5):445–452PubMedCrossRefGoogle Scholar
  125. Wagner M, Mehel H, Fischmeister R, El-Armouche A (2016) Phosphodiesterase 2: anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedeberg's Arch Pharmacol 389(11):1139–1141CrossRefGoogle Scholar
  126. Warrier S, Belevych AE, Ruse M, Eckert RL, Zaccolo M, Pozzan T, Harvey RD (2005) Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor. Am J Physiol Cell Physiol 289(2):C455–C461PubMedCrossRefGoogle Scholar
  127. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010. doi: 10.1152/physrev.00049.2006 PubMedCrossRefGoogle Scholar
  128. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970PubMedCrossRefGoogle Scholar
  129. Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci U S A 107(15):7000–7005. doi: 10.1073/pnas.1001825107 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Xiang Y, Rybin VO, Steinberg SF, Kobilka B (2002) Caveolar localization dictates physiologic signaling of beta 2-adrenoceptors in neonatal cardiac myocytes. J Biol Chem 277(37):34280–34286. doi: 10.1074/jbc.M201644200 PubMedCrossRefGoogle Scholar
  131. Xiao RP, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG (1994) Beta 2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269(29):19151–19156PubMedGoogle Scholar
  132. Xiao RP, Lakatta EG (1993) Beta 1-adrenoceptor stimulation and beta 2-adrenoceptor stimulation differ in their effects on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73(2):286–300PubMedCrossRefGoogle Scholar
  133. Yanaka N, Kurosawa Y, Minami K, Kawai E, Omori K (2003) cGMP-phosphodiesterase activity is up-regulated in response to pressure overload of rat ventricles. Biosci Biotechnol Biochem. 67(5):973–979Google Scholar
  134. Zaccolo M, De Giorgi F, Cho CY, Feng L, Knapp T, Negulescu PA, Taylor SS, Tsien RY, Pozzan T (2000) A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2(1):25–29PubMedCrossRefGoogle Scholar
  135. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715PubMedCrossRefGoogle Scholar
  136. Zakhary DR, Moravec CS, Stewart RW, Bond M (1999) Protein kinase a (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation 99(4):505–510PubMedCrossRefGoogle Scholar
  137. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 98(4):1607–1612. doi: 10.1073/pnas.98.4.1607 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L, Dodoni G, Stangherlin A, Livie C, Jiang H, Sin YY, Gesellchen F, Terrin A, Baillie GS, Nicklin SA, Graham D, Szabo-Fresnais N, Krall J, Vandeput F, Movsesian M, Furlan L, Corsetti V, Hamilton G, Lefkimmiatis K, Sjaastad I, Zaccolo M (2015) Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ Res 117(8):707–719. doi: 10.1161/CIRCRESAHA.114.305892 PubMedCrossRefGoogle Scholar
  139. Zoccarato A, Fields LH, Zaccolo M (2016) Response to Wagner et al.: phosphodiesterase-2-anti-adrenergic friend or hypertrophic foe in heart disease? Naunyn Schmiedeberg’s Arch Pharmacol 389(11):1143–1145CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cardiovascular DivisionKing’s College London BHF Centre of Research ExcellenceLondonUK
  2. 2.Department of Physiology, Anatomy and GeneticsBHF Centre of Research Excellence, University of OxfordOxfordUK

Personalised recommendations