Advertisement

Function to Failure: Compartmentalization of Cardiomyocyte Signaling by A-Kinase-Anchoring Proteins

  • John M. Redden
  • Kimberly L. Dodge-Kafka
  • Michael S. Kapiloff
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Compartmentalization of signaling enzymes allows cardiomyocytes to make contextually specific decisions using a common set of second messengers. Though first identified by their role in localizing the pleiotropic cAMP-dependent protein kinase A (PKA) to specific intracellular organelles and compartments, A-kinase-anchoring proteins (AKAPs) are a structurally and functionally diverse family of multivalent scaffolds that organize “signalosomes” constituting critical nodes in the cell-type-specific network of intracellular signaling pathways. This chapter summarizes the role of AKAPs in cardiomyocytes, with a focus on the intersection of compartmentalized signaling and cardiac pathophysiology.

Notes

Compliance with Ethical Standards

Funding

This work was funded by the State of Connecticut Department of Public Health Grant 2014-0133 (K.D.K.) and the US National Institutes of Health Grants HL126825 (K.D.K. and M.S.K.) and HL075398 (M.S.K.)

Conflict of Interest Statement

Drs. Kapiloff and Dodge-Kafka are coinventors of patented intellectual property concerning the use of RSK3 and AKAP6 inhibitors for the treatment of heart failure and by which they and the University of Miami may gain royalties from future commercialization. Dr. Kapiloff is the manager of Anchored RSK3 Inhibitors, LLC, and president of Cardiac RSK3 Inhibitors, LLC, companies interested in developing RSK3-targeted therapies and in which Dr. Kapiloff holds equity.

References

  1. Abrenica B, AlShaaban M, Czubryt MP (2009) The A-kinase anchor protein AKAP121 is a negative regulator of cardiomyocyte hypertrophy. J Mol Cell Cardiol 46:674–681CrossRefPubMedGoogle Scholar
  2. Appert-Collin A, Cotecchia S, Nenniger-Tosato M et al (2007) The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates α1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci 104:10140–10145. doi: 10.1073/pnas.0701099104 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bartos DC, Grandi E, Ripplinger CM (2015) Ion channels in the heart. Compr Physiol 5:1423–1464. doi: 10.1002/cphy.c140069 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205. doi: 10.1038/415198a CrossRefPubMedGoogle Scholar
  5. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49. doi: 10.1146/annurev.physiol.70.113006.100455 CrossRefPubMedGoogle Scholar
  6. Bidwell P, Blackwell DJ, Hou Z et al (2011) Phospholamban binds with differential affinity to calcium pump conformers. J Biol Chem 286:35044–35050. doi: 10.1074/jbc.M111.266759 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bodi I, Mikala G, Koch SE et al (2005) The L-type calcium channel in the heart: the beat goes on. J Clin Invest 115(12):3306–3317. doi: 10.1172/JCI27167 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cariolato L, Cavin S, Diviani D (2011) A-kinase anchoring protein (AKAP)-Lbc anchors a PKN-based signaling complex involved in α1-adrenergic receptor-induced p38 activation. J Biol Chem 286:7925–7937. doi: 10.1074/jbc.M110.185645 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carnegie GK, Soughayer J, Smith FD et al (2008) AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell 32:169–179. doi: 10.1016/j.molcel.2008.08.030 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Champion HC (2005) Targeting protein phosphatase 1 in heart failure. Circ Res 96:708–710. doi: 10.1161/01.RES.0000164359.95588.25 CrossRefPubMedGoogle Scholar
  11. Chen L, Kass RS (2006) Dual roles of the A kinase-anchoring protein Yotiao in the modulation of a cardiac potassium channel: a passive adaptor versus an active regulator. Eur J Cell Biol 85:623–626. doi: 10.1016/j.ejcb.2006.03.002 CrossRefPubMedGoogle Scholar
  12. Chen L, Kurokawa J, Kass RS (2005) Phosphorylation of the A-kinase-anchoring protein Yotiao contributes to protein kinase A regulation of a heart potassium channel. J Biol Chem 280:31347–31352. doi: 10.1074/jbc.M505191200 CrossRefPubMedGoogle Scholar
  13. Chen L, Marquardt ML, Tester DJ et al (2007) Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci U S A 104:20990–20995. doi: 10.1073/pnas.0710527105 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cohn JN, Ferrari R, Sharpe N, Forum I (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35(3):569–582CrossRefPubMedGoogle Scholar
  15. Diviani D, Soderling J, Scott JD (2001) AKAP-Lbc anchors protein kinase A and nucleates Galpha 12-selective Rho-mediated stress fiber formation. J Biol Chem 276:44247–44257. doi: 10.1074/jbc.M106629200 CrossRefPubMedGoogle Scholar
  16. Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. AJP Hear Circ Physiol 301:H1742–H1753. doi: 10.1152/ajpheart.00569.2011 CrossRefGoogle Scholar
  17. Diviani D, Maric D, Perez Lopez I et al (2013) A-kinase anchoring proteins: molecular regulators of the cardiac stress response. Biochim Biophys Acta 1833:901–908. doi: 10.1016/j.bbamcr.2012.07.014 CrossRefPubMedGoogle Scholar
  18. Dodge-Kafka KL, Soughayer J, Pare GC et al (2005) The protein kinase a anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437:574–578. doi: 10.1038/nature03966 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dodge-Kafka KL, Langeberg L, Scott JD (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins. Circ Res 98:993–1001. doi: 10.1161/01.RES.0000218273.91741.30 CrossRefPubMedGoogle Scholar
  20. Durham JT, Brand OM, Arnold M et al (2006) Myospryn is a direct transcriptional target for MEF2A that encodes a striated muscle, alpha-actinin-interacting, costamere-localized protein. J Biol Chem 281:6841–6849. doi: 10.1074/jbc.M510499200 CrossRefPubMedGoogle Scholar
  21. Edwards HV, Scott JD, Baillie GS (2012) The A-kinase-anchoring protein AKAP-lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser(16). Biochem J 446:437–443. doi: 10.1042/BJ20120570 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fink MA, Zakhary DR, Mackey JA et al (2001) AKAP-mediated targeting of protein kinase a regulates contractility in cardiac myocytes. Circ Res 88:291–297CrossRefPubMedGoogle Scholar
  23. Fraser LDC, Tavalin SJ, Lester LB et al (1998) A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. EMBO J 17:2261–2272. doi: 10.1093/emboj/17.8.2261 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589. doi: 10.1161/01.CIR.0000120390.68287.BB CrossRefPubMedGoogle Scholar
  25. Gray PC, Johnson BD, Westenbroek RE et al (1998) Primary structure and function of an a kinase anchoring protein associated with calcium channels. Neuron 20:1017–1026. doi: 10.1016/S0896-6273(00)80482-1 CrossRefPubMedGoogle Scholar
  26. Greenwald EC, Redden JM, Dodge-Kafka KL, Saucerman JJ (2013) Scaffold state-switching amplifies, accelerates and insulates protein kinase C signaling. J Biol Chem 289(4):2353–2360. doi: 10.1074/jbc.M113.497941 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grimby G, Nilsson NJ, Saltin B (1966) Cardiac output during submaximal and maximal exercise in active middle-aged athletes. J Appl Physiol 21:1150–1156CrossRefPubMedGoogle Scholar
  28. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64. doi: 10.1172/JCI108079 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Guillory AN, Yin X, Wijaya CS et al (2013) Enhanced cardiac function in Gravin mutant mice involves alterations in the β-adrenergic receptor signaling cascade. PLoS One 8:e74784. doi: 10.1371/journal.pone.0074784 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hall DD, Davare MA, Shi M et al (2007) Critical role of cAMP-dependent protein kinase anchoring to the L-type calcium channel Cav1.2 via A-kinase anchor protein 150 in neurons. Biochemistry 46:1635–1646. doi: 10.1021/bi062217x CrossRefPubMedGoogle Scholar
  31. Hayes JS, Brunton LL, Mayer SE (1980) Selective activation of particulate cAMP-dependent protein kinase by isoproterenol and prostaglandin E1. J Biol Chem 255:5113–5119PubMedGoogle Scholar
  32. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380. doi: 10.1056/NEJMra072139 CrossRefPubMedGoogle Scholar
  33. Hoffmann R, Baillie GS, MacKenzie SJ et al (1999) The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J 18:893–903CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hulme JT, Ahn M, Hauschka SD et al (2002) A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 277:4079–4087. doi: 10.1074/jbc.M109814200 CrossRefPubMedGoogle Scholar
  35. Jones BW, Brunet S, Gilbert ML et al (2012) Cardiomyocytes from AKAP7 knockout mice respond normally to adrenergic stimulation. Proc Natl Acad Sci U S A 109:17099–17104. doi: 10.1073/pnas.1215219109 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87:1095–1102. doi: 10.1161/01.RES.87.12.1095 CrossRefPubMedGoogle Scholar
  37. Kapiloff MS, Schillace RV, Westphal AM, Scott JD (1999) mAKAP: an A-kinase anchoring protein targeted to the nuclear membrane of differentiated myocytes. J Cell Sci 112(Pt 1):2725–2736PubMedGoogle Scholar
  38. Kapiloff MS, Piggott LA, Sadana R et al (2009) An adenylyl cyclase-mAKAPbeta signaling complex regulates cAMP levels in cardiac myocytes. J Biol Chem 284:23540–23546. doi: 10.1074/jbc.M109.030072 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Katz AM (2008) The “modern” view of heart failure: how did we get here? Circ Heart Fail 1:63–71. doi: 10.1161/CIRCHEARTFAILURE.108.772756 CrossRefPubMedGoogle Scholar
  40. Katz AM, Lorell BH (2000) Regulation of cardiac contraction and relaxation. Circulation 102:Iv-69–Iv-74CrossRefGoogle Scholar
  41. Keely SL, Corbin JD (1977) Involvement of cAMP-dependent protein kinase in the regulation of heart contractile force. Am J Physiol Heart Circ Physiol 233:H269–H275CrossRefGoogle Scholar
  42. Kritzer MD, Li J, Dodge-Kafka K, Kapiloff MS (2012) AKAPs: the architectural underpinnings of local cAMP signaling. J Mol Cell Cardiol 52:351–358CrossRefPubMedGoogle Scholar
  43. Kritzer MD, Li J, Passariello CL et al (2014) The scaffold protein muscle A-kinase anchoring protein beta orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure. Circ Heart Fail 7:663–672. doi: 10.1161/CIRCHEARTFAILURE.114.001266 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Levy MN (1971) Brief reviews: sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445. doi: 10.1161/01.RES.29.5.437 CrossRefPubMedGoogle Scholar
  45. Li J, Negro A, Lopez J et al (2010) The mAKAPbeta scaffold regulates cardiac myocyte hypertrophy via recruitment of activated calcineurin. J Mol Cell Cardiol 48:387–394. doi: 10.1016/j.yjmcc.2009.10.023 CrossRefPubMedGoogle Scholar
  46. Li Y, Chen L, Kass RS, Dessauer CW (2012) The A-kinase anchoring protein Yotiao facilitates complex formation between adenylyl cyclase type 9 and the IKs potassium channel in heart. J Biol Chem 287:29815–29824. doi: 10.1074/jbc.M112.380568 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li J, Kritzer MD, Michel JJC et al (2013a) Anchored p90 ribosomal S6 kinase 3 is required for cardiac myocyte hypertrophy. Circ Res 112:128–139. doi: 10.1161/CIRCRESAHA.112.276162 CrossRefPubMedGoogle Scholar
  48. Li J, Vargas MAX, Kapiloff MS, Dodge-Kafka KL (2013b) Regulation of MEF2 transcriptional activity by calcineurin/mAKAP complexes. Exp Cell Res 319:447–454. doi: 10.1016/j.yexcr.2012.12.016 CrossRefPubMedGoogle Scholar
  49. Lin C, Guo X, Lange S et al (2013) Cypher/ZASP is a novel A-kinase anchoring protein. J Biol Chem 288:29403–29413. doi: 10.1074/jbc.M113.470708 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lygren B, Carlson CR, Santamaria K et al (2007) AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8:1061–1067. doi: 10.1038/sj.embor.7401081 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753. doi: 10.1161/CIRCRESAHA.113.300308 CrossRefPubMedGoogle Scholar
  52. McCartney S, Little BM, Langeberg LK, Scott JD (1995) Cloning and characterization of A-kinase anchor protein 100 (AKAP100). A protein that targets A-kinase to the sarcoplasmic reticulum. J Biol Chem 270:9327–9333CrossRefPubMedGoogle Scholar
  53. McConnell BK, Popovic Z, Mai N et al (2009) Disruption of protein kinase a interaction with A-kinase-anchoring proteins in the heart in vivo effects on cardiac contractility, protein kinase a phosphorylation, and troponin i proteolysis. J Biol Chem 284:1583–1592. doi: 10.1074/jbc.M806321200 CrossRefPubMedPubMedCentralGoogle Scholar
  54. McConnell B, Suryavanshi S, Fa’ak F et al (2016) Disruption of Gravin’s Scaffolding protects against isoproterenol induced heart failure. FASEB J 30:718.6–718.6Google Scholar
  55. Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475. doi: 10.1016/j.cardiores.2004.01.021 CrossRefPubMedGoogle Scholar
  56. Mozaffarian D, Benjamin EJ, Go AS et al (2015) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–360CrossRefPubMedGoogle Scholar
  57. Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28:41–61PubMedGoogle Scholar
  58. Newlon MG, Roy M, Morikis D et al (1999) The molecular basis for protein kinase A anchoring revealed by solution NMR. Nat Struct Biol 6:222–227. doi: 10.1038/6663 CrossRefPubMedGoogle Scholar
  59. Nichols CB, Rossow CF, Navedo MF et al (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107:747–756. doi: 10.1161/CIRCRESAHA.109.216127 CrossRefPubMedGoogle Scholar
  60. Nicolaou P, Hajjar RJ, Kranias EG (2009) Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J Mol Cell Cardiol 47:365–371CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pare GC, Bauman AL, McHenry M et al (2005) The mAKAP complex participates in the induction of cardiac myocyte hypertrophy by adrenergic receptor signaling. J Cell Sci 118:5637–5646. doi: 10.1242/jcs.02675 CrossRefPubMedGoogle Scholar
  62. Passariello CL, Li J, Dodge-Kafka K, Kapiloff MS (2015) mAKAP-a master scaffold for cardiac remodeling. J Cardiovasc Pharmacol 65:218–225. doi: 10.1097/FJC.0000000000000206 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pérez López I, Cariolato L, Maric D et al (2013) A-kinase anchoring protein Lbc coordinates a p38 activating signaling complex controlling compensatory cardiac hypertrophy. Mol Cell Biol 33:2903–2917. doi: 10.1128/MCB.00031-13 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Perino A, Ghigo A, Ferrero E et al (2011) Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110γ. Mol Cell 42:84–95. doi: 10.1016/j.molcel.2011.01.030 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Perrino C, Feliciello A, Schiattarella GG et al (2010) AKAP121 downregulation impairs protective cAMP signals, promotes mitochondrial dysfunction, and increases oxidative stress. Cardiovasc Res 88:101–110. doi: 10.1093/cvr/cvq155 CrossRefPubMedGoogle Scholar
  66. Potthoff MJ, Olson EN (2007) MEF2: a central regulator of diverse developmental programs. Development 134:4131–4140. doi: 10.1242/dev.008367 CrossRefPubMedGoogle Scholar
  67. Redden JM, Dodge-Kafka KL (2011) AKAP phosphatase complexes in the heart. J Cardiovasc Pharmacol 58:354–362CrossRefPubMedPubMedCentralGoogle Scholar
  68. Redden JM, Le AV, Singh A et al (2012) Spatiotemporal regulation of PKC via interactions with AKAP7 isoforms. Biochem J 446:301–309CrossRefPubMedGoogle Scholar
  69. Remme WJ, Swedberg K (2001) Guidelines for the diagnosis and treatment of chronic heart failure. Eur Heart J 22:1527–1560. doi: 10.1053/euhj.2001.2783 CrossRefPubMedGoogle Scholar
  70. Reynolds JG, McCalmon SA, Tomczyk T, Naya FJ (2007) Identification and mapping of protein kinase A binding sites in the costameric protein myospryn. Biochim Biophys Acta 1773:891–902. doi: 10.1016/j.bbamcr.2007.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Reynolds JG, McCalmon SA, Donaghey JA, Naya FJ (2008) Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J Biol Chem 283:8070–8074. doi: 10.1074/jbc.C700221200 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rigatti M, Le AV, Gerber C et al (2015) Phosphorylation state-dependent interaction between AKAP7δ/γ and phospholamban increases phospholamban phosphorylation. Cell Signal 27:1807–1815. doi: 10.1016/j.cellsig.2015.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Romeo Y, Zhang X, Roux PP (2012) Regulation and function of the RSK family of protein kinases. Biochem J 441:553–569. doi: 10.1042/BJ20110289 CrossRefPubMedGoogle Scholar
  74. Russell MA, Lund LM, Haber R et al (2006) The intermediate filament protein, synemin, is an AKAP in the heart. Arch Biochem Biophys 456:204–215. doi: 10.1016/j.abb.2006.06.010 CrossRefPubMedGoogle Scholar
  75. Satin J (2013) The long and short of PKC modulation of the L-type calcium channel. Channels 7:57–58. doi: 10.4161/chan.24147 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sciarretta S, Volpe M, Sadoshima J (2014) Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ Res 114:549–564. doi: 10.1161/CIRCRESAHA.114.302022 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Scott JD, Santana LF (2010) A-kinase anchoring proteins: getting to the heart of the matter. Circulation 121:1264–1271. doi: 10.1161/CIRCULATIONAHA.109.896357 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shanks MO, Lund LM, Manni S et al (2012) Chromodomain helicase binding protein 8 (Chd8) is a novel A-kinase anchoring protein expressed during rat cardiac development. PLoS One 7:e46316. doi: 10.1371/journal.pone.0046316 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Shih M, Lin F, Scott JD et al (1999) Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin. J Biol Chem 274:1588–1595CrossRefPubMedGoogle Scholar
  80. Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78:921–947CrossRefPubMedGoogle Scholar
  81. Singh A, Redden JMJ, Kapiloff MSM, Dodge-Kafka KL (2011) The large isoforms of AKAP18 mediate the phosphorylation of inhibitor-1 by PKA and the inhibition of PP1 activity. Mol Pharmacol 79:533–540. doi: 10.1124/mol.110.065425 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Singh A, Rigatti M, Le AV et al (2015) Analysis of AKAP7γ dimerization. J Signal Transduct 2015:371626. doi: 10.1155/2015/371626 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Spragg DD, Leclercq C, Loghmani M et al (2003) Regional alterations in protein expression in the dyssynchronous failing heart. Circulation 108:929–932. doi: 10.1161/01.CIR.0000088782.99568.CA CrossRefPubMedGoogle Scholar
  84. Strakova J, Dean JD, Sharpe KM et al (2014) Dystrobrevin increases dystrophin’s binding to the dystrophin-glycoprotein complex and provides protection during cardiac stress. J Mol Cell Cardiol 76:106–115. doi: 10.1016/j.yjmcc.2014.08.013 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sumandea CA, Garcia-Cazarin ML, Bozio CH et al (2011) Cardiac troponin T, a sarcomeric AKAP, tethers protein kinase A at the myofilaments. J Biol Chem 286:530–541. doi: 10.1074/jbc.M110.148684 CrossRefPubMedGoogle Scholar
  86. Taglieri DM, Johnson KR, Burmeister BT et al (2014) The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy. J Mol Cell Cardiol 66:27–40. doi: 10.1016/j.yjmcc.2013.10.010 CrossRefPubMedGoogle Scholar
  87. Terrenoire C, Clancy CE, Cormier JW et al (2005) Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ Res 96:e25–e34. doi: 10.1161/01.RES.0000160555.58046.9a CrossRefPubMedGoogle Scholar
  88. Terrenoire C, Houslay MD, Baillie GS, Kass RS (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 284:9140–9146. doi: 10.1074/jbc.M805366200 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tingley WG, Pawlikowska L, Zaroff JG et al (2007) Gene-trapped mouse embryonic stem cell-derived cardiac myocytes and human genetics implicate AKAP10 in heart rhythm regulation. Proc Natl Acad Sci U S A 104:8461–8466. doi: 10.1073/pnas.0610393104 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Trotter KW, Fraser IDC, Scott GK et al (1999) Alternative splicing regulates the subcellular localization of A-kinase anchoring protein 18 isoforms. J Cell Biol 147:1481–1492. doi: 10.1083/jcb.147.7.1481 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Uys GM, Ramburan A, Loos B et al (2011) Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. BMC Cell Biol 12:18. doi: 10.1186/1471-2121-12-18 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Vargas MAX, Tirnauer JS, Glidden N et al (2012) Myocyte enhancer factor 2 (MEF2) tethering to muscle selective A-kinase anchoring protein (mAKAP) is necessary for myogenic differentiation. Cell Signal 24:1496–1503. doi: 10.1016/j.cellsig.2012.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Viquerat CE, Daly P, Swedberg K et al (1985) Endogenous catecholamine levels in chronic heart failure. Relation to the severity of hemodynamic abnormalities. Am J Med 78:455–460. doi: 10.1016/0002-9343(85)90338-9 CrossRefPubMedGoogle Scholar
  94. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970. doi: 10.1038/nrm1527 CrossRefPubMedGoogle Scholar
  95. World Health Organization (2005) Preventing chronic diseases. A vital investment: WHO global report. World Health Organization, GenevaGoogle Scholar
  96. Zhang L, Malik S, Kelley GG et al (2011) Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes. J Biol Chem 286:23012–23021. doi: 10.1074/jbc.M111.231993 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhang L, Malik S, Pang J et al (2013) Phospholipase Cε hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy. Cell 153:216–227. doi: 10.1016/j.cell.2013.02.047 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • John M. Redden
    • 1
  • Kimberly L. Dodge-Kafka
    • 2
  • Michael S. Kapiloff
    • 3
  1. 1.Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUSA
  2. 2.Calhoun Center for CardiologyUniversity of Connecticut Health CenterFarmingtonUSA
  3. 3.Cardiac Signal Transduction and Cellular Biology Laboratory, Departments of Pediatrics and Medicine, Leonard M. Miller School of MedicineInterdisciplinary Stem Cell Institute, University of MiamiMiamiUSA

Personalised recommendations