Distribution and Regulation of L-Type Ca2+ Channels in Cardiomyocyte Microdomains

  • Alexey V. Glukhov
  • Anamika Bhargava
  • Julia Gorelik
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Cardiac excitation involves action potential generation by individual cells and its conduction from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type Ca2+ channels, which allow a small amount of Ca2+ to enter the cell. This triggers the release of a much greater amount of Ca2+ from the intracellular Ca2+ store, the sarcoplasmic reticulum, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. Recently, it became evident that discrete clusters of L-type Ca2+ channels exist in the sarcolemma, where they form an interacting network with regulatory proteins and receptors. It allows the specificity, reliability, and accuracy of autonomic modulation of the excitation-contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of calcium channels and associated signaling pathways may contribute to the pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias. This chapter reviews the emerging understanding of microdomain-specific distribution, functioning, regulation, and remodeling of L-type Ca2+ channels in atrial and ventricular myocytes and their contributions to the cellular signaling and cardiac pathology.


L-type calcium channel Cardiomyocyte Microdomain Caveolin Calcium signaling Remodeling Heart failure Atrial fibrillation 


Compliance with Ethical Standards

Conflict of Interest Statement

The authors declare that they have no conflict of interest.


  1. Andersen OS, Koeppe RE (2007) Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36:107–130PubMedCrossRefGoogle Scholar
  2. Balijepalli RC, Kamp TJ (2008) Caveolae, ion channels and cardiac arrhythmias. Prog Biophys Mol Biol 98:149–160PubMedCrossRefGoogle Scholar
  3. Balijepalli RC, Lokuta AJ, Maertz NA et al (2003) Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc Res 59:67–77PubMedCrossRefGoogle Scholar
  4. Balijepalli RC, Foell JD, Hall DD et al (2006) Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A 103:7500–7505PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balycheva M, Glukhov A, Schobesberger S et al (2014) Increased open probability of L-type calcium channels localized in T-tubules in patients with chronic atrial fibrillation: role of channel subunits. Circulation 130:A18709Google Scholar
  6. Banfi C, Brioschi M, Wait R et al (2006) Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts. Proteomics 6:1976–1988PubMedCrossRefGoogle Scholar
  7. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205PubMedCrossRefGoogle Scholar
  8. Best JM, Kamp TJ (2012) Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 52:376–387PubMedCrossRefGoogle Scholar
  9. Bhargava A, Lin X, Novak P et al (2013) Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res 112:1112–1120PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bootman MD, Higazi DR, Coombes S et al (2006) Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 119:3915–3925PubMedCrossRefGoogle Scholar
  11. Boulware MI, Kordasiewicz H, Mermelstein PG (2007) Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurosci 27:9941–9950PubMedCrossRefGoogle Scholar
  12. Brette F, Komukai K, Orchard CH (2002) Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am J Physiol Heart Circ Physiol 283:H1720–H1728PubMedCrossRefGoogle Scholar
  13. Brette F, Despa S, Bers DM et al (2005) Spatiotemporal characteristics of SR Ca2+ uptake and release in detubulated rat ventricular myocytes. J Mol Cell Cardiol 39:804–812PubMedCrossRefGoogle Scholar
  14. Bristow MR, Ginsburg R, Minobe W et al (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211PubMedCrossRefGoogle Scholar
  15. Bristow MR, Ginsburg R, Umans V et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309PubMedCrossRefGoogle Scholar
  16. Brundel BJ, Van Gelder IC, Henning RH et al (2001) Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103:684–690PubMedCrossRefGoogle Scholar
  17. Brundel BJ, Ausma J, van Gelder IC et al (2002) Activation of proteolysis by calpains and structural changes in human paroxysmal and persistent atrial fibrillation. Cardiovasc Res 54:380–389PubMedCrossRefGoogle Scholar
  18. Bryant S, Kimura TE, Kong CH et al (2014) Stimulation of ICa by basal PKA activity is facilitated by caveolin-3 in cardiac ventricular myocytes. J Mol Cell Cardiol 68:47–55PubMedPubMedCentralCrossRefGoogle Scholar
  19. Caldwell JL, Smith CE, Taylor RF et al (2014) Dependence of cardiac transverse tubules on the BAR domain protein amphiphysin II (BIN-1). Circ Res 115:986–996PubMedPubMedCentralCrossRefGoogle Scholar
  20. Carl SL, Felix K, Caswell AH et al (1995) Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol 129:673–682PubMedCrossRefGoogle Scholar
  21. Carnegie GK, Means CK, Scott JD (2009) A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 61:394–406PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cavalli A, Eghbali M, Minosyan TY et al (2007) Localization of sarcolemmal proteins to lipid rafts in the myocardium. Cell Calcium 42:313–322PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cerrone M, Delmar M (2014) Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc Med 24:184–190PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cheng EP, Yuan C, Navedo MF et al (2011) Restoration of normal L-type Ca2+ channel function during Timothy syndrome by ablation of an anchoring protein. Circ Res 109:255–261PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen-Izu Y, McCulle SL, Ward CW et al (2006) Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys J 91:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chesley A, Lundberg MS, Asai T et al (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3'-kinase. Circ Res 87:1172–1179PubMedCrossRefGoogle Scholar
  27. Christ T, Boknik P, Wohrl S et al (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657PubMedCrossRefGoogle Scholar
  28. Clarke JD, Caldwell JL, Horn MA et al (2015) Perturbed atrial calcium handling in an ovine model of heart failure: potential roles for reductions in the L-type calcium current. J Mol Cell Cardiol 79:169–179PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cloues RK, Sather WA (2000) Permeant ion binding affinity in subconductance states of an L-type Ca2+ channel expressed in Xenopus laevis oocytes. J Physiol 524(Pt 1):19–36PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cohen AW, Park DS, Woodman SE et al (2003) Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284:C457–C474PubMedCrossRefGoogle Scholar
  31. Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588:3169–3178PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dibb KM, Clarke JD, Horn MA et al (2009) Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail 2:482–489PubMedCrossRefGoogle Scholar
  33. Dibb KM, Clarke JD, Eisner DA et al (2013) A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol 58:84–91PubMedCrossRefGoogle Scholar
  34. Dobrev D, Teos LY, Lederer WJ (2009) Unique atrial myocyte Ca2+ signaling. J Mol Cell Cardiol 46:448–451PubMedCrossRefGoogle Scholar
  35. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283PubMedCrossRefGoogle Scholar
  36. Epshtein Y, Chopra AP, Rosenhouse-Dantsker A et al (2009) Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc Natl Acad Sci U S A 106:8055–8060PubMedPubMedCentralCrossRefGoogle Scholar
  37. Feiner EC, Chung P, Jasmin JF et al (2011) Left ventricular dysfunction in murine models of heart failure and in failing human heart is associated with a selective decrease in the expression of caveolin-3. J Card Fail 17:253–263PubMedCrossRefGoogle Scholar
  38. Feng J, Yue L, Wang Z et al (1998) Ionic mechanisms of regional action potential heterogeneity in the canine right atrium. Circ Res 83:541–551PubMedCrossRefGoogle Scholar
  39. Foell JD, Balijepalli RC, Delisle BP et al (2004) Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 17:183–200PubMedCrossRefGoogle Scholar
  40. Forssmann WG, Girardier L (1970) A study of the T system in rat heart. J Cell Biol 44:1–19PubMedPubMedCentralCrossRefGoogle Scholar
  41. Frisk M, Koivumaki JT, Norseng PA et al (2014) Variable t-tubule organization and Ca2+ homeostasis across the atria. Am J Physiol Heart Circ Physiol 307:H609–H620PubMedCrossRefGoogle Scholar
  42. Gathercole DV, Colling DJ, Skepper JN et al (2000) Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in Guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle. J Mol Cell Cardiol 32:1981–1994PubMedCrossRefGoogle Scholar
  43. George MS, Pitt GS (2006) The real estate of cardiac signaling: location, location, location. Proc Natl Acad Sci U S A 103:7535–7536PubMedPubMedCentralCrossRefGoogle Scholar
  44. Glukhov AV, Balycheva M, Sanchez-Alonso JL et al (2015a) Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation 132:2372–2384PubMedPubMedCentralCrossRefGoogle Scholar
  45. Glukhov AV, Kalyanasundaram A, Lou Q et al (2015b) Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex. Eur Heart J 36:686–697PubMedCrossRefGoogle Scholar
  46. Gomez AM, Valdivia HH, Cheng H et al (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806PubMedCrossRefGoogle Scholar
  47. Gondo N, Ono K, Mannen K et al (1998) Four conductance levels of cloned cardiac L-type Ca2+ channel alpha1 and alpha1/beta subunits. FEBS Lett 423:86–92PubMedCrossRefGoogle Scholar
  48. Gray PC, Tibbs VC, Catterall WA et al (1997) Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem 272:6297–6302PubMedCrossRefGoogle Scholar
  49. Harvey RD, Calaghan SC (2012) Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. J Mol Cell Cardiol 52:366–375PubMedCrossRefGoogle Scholar
  50. Hatem SN, Benardeau A, Rucker-Martin C et al (1997) Different compartments of sarcoplasmic reticulum participate in the excitation-contraction coupling process in human atrial myocytes. Circ Res 80:345–353PubMedCrossRefGoogle Scholar
  51. Hayashi T, Arimura T, Ueda K et al (2004) Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 313:178–184PubMedCrossRefGoogle Scholar
  52. He J, Conklin MW, Foell JD et al (2001) Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure. Cardiovasc Res 49:298–307PubMedCrossRefGoogle Scholar
  53. He JQ, Balijepalli RC, Haworth RA et al (2005) Crosstalk of beta-adrenergic receptor subtypes through Gi blunts beta-adrenergic stimulation of L-type Ca2+ channels in canine heart failure. Circ Res 97:566–573PubMedCrossRefGoogle Scholar
  54. Heinzel FR, Bito V, Biesmans L et al (2008) Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res 102:338–346PubMedCrossRefGoogle Scholar
  55. Heinzel FR, MacQuaide N, Biesmans L et al (2011) Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. J Mol Cell Cardiol 50:390–400PubMedCrossRefGoogle Scholar
  56. Hong T, Yang H, Zhang SS et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20:624–632PubMedPubMedCentralCrossRefGoogle Scholar
  57. Horikawa YT, Panneerselvam M, Kawaraguchi Y et al (2011) Cardiac-specific overexpression of caveolin-3 attenuates cardiac hypertrophy and increases natriuretic peptide expression and signaling. J Am Coll Cardiol 57:2273–2283PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hullin R, Khan IF, Wirtz S et al (2003) Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. J Biol Chem 278:21623–21630PubMedCrossRefGoogle Scholar
  59. Insel PA, Head BP, Ostrom RS et al (2005) Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 1047:166–172PubMedCrossRefGoogle Scholar
  60. Johnson KR, Nicodemus-Johnson J, Carnegie GK et al (2012) Molecular evolution of A-kinase anchoring protein (AKAP)-7: implications in comparative PKA compartmentalization. BMC Evol Biol 12:125PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kamp TJ, He JQ (2002) L-type Ca2+ channels gaining respect in heart failure. Circ Res 91:451–453PubMedCrossRefGoogle Scholar
  62. Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase a and protein kinase C. Circ Res 87:1095–1102PubMedCrossRefGoogle Scholar
  63. Kawabe JI, Grant BS, Yamamoto M et al (2001) Changes in caveolin subtype protein expression in aging rat organs. Mol Cell Endocrinol 176:91–95PubMedCrossRefGoogle Scholar
  64. Kawai M, Hussain M, Orchard CH (1999) Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am J Phys 277:H603–H609CrossRefGoogle Scholar
  65. Kirk MM, Izu LT, Chen-Izu Y et al (2003) Role of the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J Physiol 547:441–451PubMedPubMedCentralCrossRefGoogle Scholar
  66. Klein G, Schroder F, Vogler D et al (2003) Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. Role of phosphatase 2A. Cardiovasc Res 59:37–45PubMedCrossRefGoogle Scholar
  67. Le Scouarnec S, Bhasin N, Vieyres C et al (2008) Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci U S A 105:15617–15622PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lenaerts I, Bito V, Heinzel FR et al (2009) Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res 105:876–885PubMedCrossRefGoogle Scholar
  69. Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93:896–906PubMedCrossRefGoogle Scholar
  70. Louch WE, Bito V, Heinzel FR et al (2004) Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res 62:63–73PubMedCrossRefGoogle Scholar
  71. Lyon AR, MacLeod KT, Zhang Y et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A 106:6854–6859PubMedPubMedCentralCrossRefGoogle Scholar
  72. Mackenzie L, Bootman MD, Berridge MJ et al (2001) Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes. J Physiol 530:417–429PubMedPubMedCentralCrossRefGoogle Scholar
  73. Makarewich CA, Correll RN, Gao H et al (2012) A caveolae-targeted L-type Ca2+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110:669–674PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mangoni ME, Couette B, Bourinet E et al (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548PubMedPubMedCentralCrossRefGoogle Scholar
  75. McDonald TF, Pelzer S, Trautwein W et al (1994) Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74:365–507PubMedCrossRefGoogle Scholar
  76. Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388PubMedCrossRefGoogle Scholar
  77. Nattel S, Maguy A, Le Bouter S et al (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456PubMedCrossRefGoogle Scholar
  78. Nichols CB, Rossow CF, Navedo MF et al (2010) Sympathetic stimulation of adult cardiomyocytes requires association of AKAP5 with a subpopulation of L-type calcium channels. Circ Res 107:747–756PubMedCrossRefGoogle Scholar
  79. Nikolaev VO, Bunemann M, Schmitteckert E et al (2006a) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091PubMedCrossRefGoogle Scholar
  80. Nikolaev VO, Gambaryan S, Lohse MJ (2006b) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3:23–25PubMedCrossRefGoogle Scholar
  81. Nikolaev VO, Moshkov A, Lyon AR et al (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657PubMedCrossRefGoogle Scholar
  82. Osterrieder W, Brum G, Hescheler J et al (1982) Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 298:576–578PubMedCrossRefGoogle Scholar
  83. Ouadid H, Albat B, Nargeot J (1995) Calcium currents in diseased human cardiac cells. J Cardiovasc Pharmacol 25:282–291PubMedCrossRefGoogle Scholar
  84. Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37:633–649PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45:625–633PubMedPubMedCentralCrossRefGoogle Scholar
  86. Park DS, Cohen AW, Frank PG et al (2003) Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 42:15124–15131PubMedCrossRefGoogle Scholar
  87. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391PubMedPubMedCentralCrossRefGoogle Scholar
  88. Perera RK, Nikolaev VO (2013) Compartmentation of cAMP signalling in cardiomyocytes in health and disease. Acta Physiol (Oxf) 207:650–662CrossRefGoogle Scholar
  89. Pike LJ (2004) Lipid rafts: heterogeneity on the high seas. Biochem J 378:281–292PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ratajczak P, Damy T, Heymes C et al (2003) Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57:358–369PubMedCrossRefGoogle Scholar
  91. Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54:431–467PubMedCrossRefGoogle Scholar
  92. Richards MA, Clarke JD, Saravanan P et al (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 301:H1996–H2005PubMedPubMedCentralCrossRefGoogle Scholar
  93. Romanenko VG, Rothblat GH, Levitan I (2002) Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J 83:3211–3222PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sanchez-Alonso JL, Bhargava A, O’Hara T et al (2016) Microdomain-specific modulation of L-type calcium channels leads to triggered ventricular arrhythmia in heart failure. Circ Res 119:944–955PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schaper J, Kostin S, Hein S et al (2002) Structural remodelling in heart failure. Exp Clin Cardiol 7:64–68PubMedPubMedCentralGoogle Scholar
  96. Schotten U, Haase H, Frechen D et al (2003) The L-type Ca2+-channel subunits alpha1C and beta2 are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 35:437–443PubMedCrossRefGoogle Scholar
  97. Schroder E, Byse M, Satin J (2009) L-type calcium channel C terminus autoregulates transcription. Circ Res 104:1373–1381PubMedPubMedCentralCrossRefGoogle Scholar
  98. Schulson MN, Scriven DR, Fletcher P et al (2011) Couplons in rat atria form distinct subgroups defined by their molecular partners. J Cell Sci 124:1167–1174PubMedPubMedCentralCrossRefGoogle Scholar
  99. Scriven DR, Asghari P, Schulson MN et al (2010) Analysis of Cav1.2 and ryanodine receptor clusters in rat ventricular myocytes. Biophys J 99:3923–3929PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sen L, Bialecki RA, Smith E et al (1992) Cholesterol increases the L-type voltage-sensitive calcium channel current in arterial smooth muscle cells. Circ Res 71:1008–1014PubMedCrossRefGoogle Scholar
  101. Shaw RM, Colecraft HM (2013) L-type calcium channel targeting and local signalling in cardiac myocytes. Cardiovasc Res 98:177–186PubMedPubMedCentralCrossRefGoogle Scholar
  102. Shibata EF, Brown TL, Washburn ZW et al (2006) Autonomic regulation of voltage-gated cardiac ion channels. J Cardiovasc Electrophysiol 17(Suppl 1):S34–S42PubMedCrossRefGoogle Scholar
  103. Simionescu M, Simionescu N, Palade GE (1975) Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol 67:863–885PubMedCrossRefGoogle Scholar
  104. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39PubMedCrossRefGoogle Scholar
  105. Smyrnias I, Mair W, Harzheim D et al (2010) Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation-contraction coupling and inotropic stimulation. Cell Calcium 47:210–223PubMedCrossRefGoogle Scholar
  106. Song KS, Scherer PE, Tang Z et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165PubMedCrossRefGoogle Scholar
  107. Sprenger JU, Nikolaev VO (2013) Biophysical techniques for detection of cAMP and cGMP in living cells. Int J Mol Sci 14:8025–8046PubMedPubMedCentralCrossRefGoogle Scholar
  108. Stangherlin A, Zaccolo M (2012) Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system. Am J Physiol Heart Circ Physiol 302:H379–H390PubMedCrossRefGoogle Scholar
  109. Takagishi Y, Rothery S, Issberner J et al (1997) Spatial distribution of dihydropyridine receptors in the plasma membrane of Guinea pig cardiac myocytes investigated by correlative confocal microscopy and label-fracture electron microscopy. J Electron Microsc 46:165–170CrossRefGoogle Scholar
  110. Tidball JG, Cederdahl JE, Bers DM (1991) Quantitative analysis of regional variability in the distribution of transverse tubules in rabbit myocardium. Cell Tissue Res 264:293–298PubMedCrossRefGoogle Scholar
  111. Timofeyev V, Myers RE, Kim HJ et al (2013) Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res 112:1567–1576PubMedPubMedCentralCrossRefGoogle Scholar
  112. Trafford AW, Clarke JD, Richards MA et al (2013) Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias. Cardiovasc Res 98:192–203PubMedCrossRefGoogle Scholar
  113. Tsutsumi YM, Horikawa YT, Jennings MM et al (2008) Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation 118:1979–1988PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wakili R, Yeh YH, Yan Qi X et al (2010) Multiple potential molecular contributors to atrial hypocontractility caused by atrial tachycardia remodeling in dogs. Circ Arrhythm Electrophysiol 3:530–541PubMedCrossRefGoogle Scholar
  115. Walden AP, Dibb KM, Trafford AW (2009) Differences in intracellular calcium homeostasis between atrial and ventricular myocytes. J Mol Cell Cardiol 46:463–473PubMedCrossRefGoogle Scholar
  116. Wei S, Guo A, Chen B et al (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107:520–531PubMedPubMedCentralCrossRefGoogle Scholar
  117. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010PubMedCrossRefGoogle Scholar
  118. Woo AY, Xiao RP (2012) Beta-adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin 33:335–341PubMedPubMedCentralCrossRefGoogle Scholar
  119. Woo SH, Cleemann L, Morad M (2003) Spatiotemporal characteristics of junctional and nonjunctional focal Ca2+ release in rat atrial myocytes. Circ Res 92:e1–11PubMedCrossRefGoogle Scholar
  120. Yamashita T, Nakajima T, Hazama H et al (1995) Regional differences in transient outward current density and inhomogeneities of repolarization in rabbit right atrium. Circulation 92:3061–3069PubMedCrossRefGoogle Scholar
  121. Yeh YH, Wakili R, Qi XY et al (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1:93–102PubMedCrossRefGoogle Scholar
  122. Zhang P, Mende U (2011) Regulators of G-protein signaling in the heart and their potential as therapeutic targets. Circ Res 109:320–333PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang Q, Timofeyev V, Qiu H et al (2011) Expression and roles of Cav1.3 (alpha1D) L-type Ca2+ channel in atrioventricular node automaticity. J Mol Cell Cardiol 50:194–202PubMedCrossRefGoogle Scholar
  124. Zhao YY, Liu Y, Stan RV et al (2002) Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci U S A 99:11375–11380PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhu WZ, Wang SQ, Chakir K et al (2003) Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111:617–625PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexey V. Glukhov
    • 1
  • Anamika Bhargava
    • 2
  • Julia Gorelik
    • 3
  1. 1.Department of MedicineUniversity of Wisconsin-Madison School of Medicine and Public HealthMadisonUSA
  2. 2.Department of BiotechnologyIndian Institute of Technology Hyderabad, KandiSangareddyIndia
  3. 3.Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental MedicineNational Heart and Lung Institute, Imperial CollegeLondonUK

Personalised recommendations