Modeling River-Induced Phosphorus Limitation in the Context of Coastal Hypoxia



The urban development of coastal areas and the increased use of chemical fertilizers over the last century have led to a worldwide expansion of coastal eutrophication and a significant increase in the occurrence and intensity of human-induced coastal hypoxia. Proportionally, nitrogen load has often increased more severely than phosphorus load and phosphorus limitation became a common seasonal phenomenon in many eutrophic coastal systems. Phosphorus limitation may alter the magnitude, timing, and location of phytoplankton production with potential effects on hypoxia. Yet, because of the difficulty in observing these effects, limited work has been carried out to assess the influence of P limitation on hypoxia. Models are thus useful tools for simulating the effects of river-induced phosphorus limitation on coastal hypoxic systems. Modeling P limitation is important to better understand the processes controlling hypoxia, to improve the predictive skill of hypoxia prediction models, and to design and evaluate nutrient management strategies for hypoxia mitigation. Here, we review the effects of phosphorus limitation on a continuum of coastal hypoxic systems, contrasting the effects of P limitation on systems that are primarily one-dimensional (or “flow-through”) like the Neuse River Estuary versus more dispersive open systems like the Mississippi River plume. We discuss modeling frameworks and techniques that are relevant in this context and summarize recent modeling work that quantitatively assesses the effect of phosphorus limitation on hypoxia development in the Mississippi River plume.


Coastal eutrophication Biogeochemical model Phosphorus limitation Coastal hypoxia Nutrient load Hypoxia mitigation 



This work was supported by NOAA CSCOR grants NA06N0S4780198 and NA09N0S4780208. This is NOAA NGOMEX publication number 215.


  1. Bales JD, Robbins JC (1999) A dynamic water-quality modeling framework for the Neuse River estuary, North Carolina. No. 99-4017. US Department of the Interior, US Geological SurveyGoogle Scholar
  2. Boesch DF (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries 25:886–900. doi: 10.1007/BF02804914
  3. Burkholder JM, Dickey DA, Kinder CA et al (2006) Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary : a decadal study of anthropogenic and climatic influences 51:463–487. doi: 10.4319/lo.2006.51.1_part_2.0463
  4. Buzzelli C, Luettich R, Powers S et al (2002) Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary. Mar Ecol Prog Ser 230:103–112. doi: 10.3354/meps230103 CrossRefGoogle Scholar
  5. Caraco N, Cole J, Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9:277–290. doi: 10.1007/BF00000602 CrossRefGoogle Scholar
  6. Conley DJ (2000) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410:87–96. doi: 10.1023/A:1003784504005 CrossRefGoogle Scholar
  7. Conley DJ, Carstensen J, Aigars J et al (2011) Hypoxia is increasing in the coastal zone of the Baltic Sea. Environ Sci Technol 45:6777–6783. doi: 10.1021/es201212r CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conley DJ, Humborg C, Rahm L et al (2002) Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 36:5315–5320. doi: 10.1021/es025763w CrossRefPubMedGoogle Scholar
  9. Eilola K, Meier HEM, Almroth E (2009) On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea; a model study. J Mar Syst 75:163–184. doi: 10.1016/j.jmarsys.2008.08.009 CrossRefGoogle Scholar
  10. Eldridge PM, Roelke DL (2010) Origins and scales of hypoxia on the Louisiana shelf: importance of seasonal plankton dynamics and river nutrients and discharge. Ecol Model 221:1028–1042. doi: 10.1016/j.ecolmodel.2009.04.054 CrossRefGoogle Scholar
  11. Fennel K, Brady D, DiToro D et al (2009) Modeling denitrification in aquatic sediments. Biogeochemistry 93:159–178. doi: 10.1007/s10533-008-9270-z CrossRefGoogle Scholar
  12. Fennel K, Hu J, Laurent A et al (2013) Sensitivity of hypoxia predictions for the Northern Gulf of Mexico to sediment oxygen consumption and model nesting. J Geophys Res-Oceans 118:990–1002. doi: 10.1002/jgrc.20077 CrossRefGoogle Scholar
  13. Fennel K, Laurent A, Hetland R, Justić D, Ko DS, Lehrter J, Murrell M, Wang L, Yu L, Zhang W (2016) Effects of model physics on hypoxia simulations for the Northern Gulf of Mexico: a model intercomparison. J Geophys Res-Oceans 121. doi: 10.1002/2015JC011577
  14. Fennel K, Wilkin J, Levin J et al (2006) Nitrogen cycling in the Middle Atlantic Bight: results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Glob Biogeochem Cycles 20:GB3007. doi: 10.1029/2005GB002456
  15. Fennel K, Wilkin J, Previdi M, Najjar R (2008) Denitrification effects on air-sea CO2 flux in the coastal ocean: simulations for the Northwest North Atlantic. Geophys Res Lett 35:L24608. doi: 10.1029/2008GL036147 CrossRefGoogle Scholar
  16. Fisher TR, Gustafson AB, Sellner K et al (1999) Spatial and temporal variation of resource limitation in Chesapeake Bay. Mar Biol 133:763–778. doi: 10.1007/s002270050518
  17. Fisher TR, Peele ER, Ammerman JW, Harding LW (1992) Nutrient limitation of phytoplankton in Chesapeake Bay. Mar Ecol Prog Ser 90:51–63CrossRefGoogle Scholar
  18. Flynn KJ (2003) Modelling multi-nutrient interactions in phytoplankton; balancing simplicity and realism. Prog Oceanogr 56:249–279. doi: 10.1016/S0079-6611(03)00006-5 CrossRefGoogle Scholar
  19. Forrest DR, Hetland RD, DiMarco SF (2011) Multivariable statistical regression models of the areal extent of hypoxia over the Texas-Louisiana continental shelf. Environ Res Lett 6:045002. doi: 10.1088/1748-9326/6/4/045002 CrossRefGoogle Scholar
  20. Granéli E, Wallström K, Larsson U et al (1990) Nutrient limitation of primary production in the Baltic Sea area. Ambio 19:142–151Google Scholar
  21. Greene RM, Lehrter JC, Hagy JD III (2009) Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico. Ecol Appl 19:1161–1175. doi: 10.1890/08-0035.1 CrossRefPubMedGoogle Scholar
  22. Gustafsson E (2012) Modelled long-term development of Hypoxic area and nutrient pools in the Baltic Proper. J Mar Syst 94:120–134. doi: 10.1016/j.jmarsys.2011.11.012 CrossRefGoogle Scholar
  23. Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27:634–658. doi: 10.1007/BF02907650
  24. Haidvogel DB, Arango H, Budgell WP et al (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the regional ocean modeling system. J Comput Phys 227:3595–3624. doi: 10.1016/ CrossRefGoogle Scholar
  25. Harrison JA, Bouwman AF, Mayorga E, Seitzinger S (2010) Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: a new global model. Glob Biogeochem Cycles 24:GB1003. doi: 10.1029/2009GB003590
  26. HELCOM (2013) Review of the fifth Baltic Sea pollution load compilation for the 2013 HELCOM Ministerial MeetingGoogle Scholar
  27. Hetland RD, DiMarco SF (2008) How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf? J Mar Syst 70:49–62. doi: 10.1016/j.jmarsys.2007.03.002 CrossRefGoogle Scholar
  28. Hetland RD, DiMarco SF (2012) Skill assessment of a hydrodynamic model of circulation over the Texas-Louisiana continental shelf. Ocean Model 43–44:64–76. doi: 10.1016/j.ocemod.2011.11.009 CrossRefGoogle Scholar
  29. Hirsch RM, Moyer DL, Phillips SW (2013) Chesapeake Bay program indicator frameworkGoogle Scholar
  30. Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51:364–376. doi: 10.4319/lo.2006.51.1_part_2.0364
  31. Humborg C, Fennel K, Pastuszak M, Fennel W (2000) A box model approach for a long-term assessment of estuarine eutrophication, Szczecin Lagoon, southern Baltic. J Mar Syst 25:387–403. doi: 10.1016/S0924-7963(00)00029-4 CrossRefGoogle Scholar
  32. Ingall E, Jahnke R (1997) Influence of water-column anoxia on the elemental fractionation of carbon and phosphorus during sediment diagenesis. Mar Geol 139:219–229. doi: 10.1016/S0025-3227(96)00112-0
  33. Irby I, Friedrichs MAM, Friedrichs CT, Bever AJ, Hood RR, Lanerolle LWJ, Li M, Linker L, Scully ME, Sellner K, ShenJ Testa J, Wang H, Wang P, Xia M (2016) Challenges associated with modeling low-oxygen waters in Chesapeake Bay: a multiple model comparison. Biogeosciences 13:2011–2028. doi: 10.5194/bg-13-2011-2016 CrossRefGoogle Scholar
  34. John EH, Flynn KJ (2000) Modelling phosphate transport and assimilation in microalgae; how much complexity is warranted? Ecol Model 125:145–157. doi: 10.1016/S0304-3800(99)00178-7 CrossRefGoogle Scholar
  35. Justić D, Wang L (2014) Assessing temporal and spatial variability of hypoxia over the inner Louisiana–upper Texas shelf: application of an unstructured-grid three-dimensional coupled hydrodynamic-water quality model. Cont Shelf Res. doi: 10.1016/j.csr.2013.08.006 Google Scholar
  36. Kemp W, Boynton W, Adolf J et al (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29. doi: 10.3354/meps303001 CrossRefGoogle Scholar
  37. Kemp WM, Sampou P, Cafrey J et al (1990) Ammonium recycling versus denitrification Chesapeake Bay sediments. Limnol Oceanogr 35:1545–1563. doi: 10.4319/lo.1990.35.7.1545 CrossRefGoogle Scholar
  38. Krauss W (2001) Baltic Sea circulation. Encycl Ocean Sci 236–244 Elsevier LtdGoogle Scholar
  39. Laurent A, Fennel K (2014) Simulated reduction of hypoxia in the Northern Gulf of Mexico due to phosphorus limitation. Elem Sci Anth 2:000022. doi: 10.12952/journal.elementa.000022 CrossRefGoogle Scholar
  40. Laurent A, Fennel K, Hu J, Hetland R (2012) Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes. Biogeosciences 9:4707–4723. doi: 10.5194/bg-9-4707-2012 CrossRefGoogle Scholar
  41. Laurent A, Fennel K, Wilson R, Lehrter J, Devereux R (2016) Parameterization of biogeochemical sediment–water fluxes using in situ measurements and a diagenetic model. Biogeosciences 13:77–94. doi: 10.5194/bg-13-77-2016 CrossRefGoogle Scholar
  42. Lohrenz SE, Fahnenstiel GL, Redalje DG et al (1997) Variations in primary production of Northern Gulf of Mexico continental shelf waters linked to nutrient inputs from the Mississippi River. Mar Ecol Prog Ser 155:45–54. doi: 10.3354/meps155045 CrossRefGoogle Scholar
  43. McManus J, Berelson WM, Coale KH et al (1997) Phosphorus regeneration in continental margin sediments. Geochim Cosmochim Ac 61:2891–2907. doi: 10.1016/S0016-7037(97)00138-5 CrossRefGoogle Scholar
  44. Murphy RR, Kemp WM, Ball WP (2011) Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries Coasts 34:1293–1309. doi: 10.1007/s12237-011-9413-7 CrossRefGoogle Scholar
  45. Nausch GI, Nehring D, Aertebjerg G (1999) Anthropogenic nutrient load of the Baltic Sea. Limnologica 29:233–241CrossRefGoogle Scholar
  46. Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Glob Biogeochem Cycles 16:1033. doi: 10.1029/2001GB001450 CrossRefGoogle Scholar
  47. Neumann T, Schernewski G (2008) Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. J Mar Syst 74:592–602. doi: 10.1016/j.jmarsys.2008.05.003 CrossRefGoogle Scholar
  48. O’Neill RV, DeAngelis DL, Pastor JJ et al (1989) Multiple nutrient limitations in ecological models. Ecol Model 46:147–163. doi: 10.1016/0304-3800(89)90015-X CrossRefGoogle Scholar
  49. Obenour DR, Michalak AM, Zhou Y, Scavia D (2012) Quantifying the impacts of stratification and nutrient loading on hypoxia in the Northern Gulf of Mexico. Env Sci Technol 46:5489. doi: 10.1021/es204481a CrossRefGoogle Scholar
  50. Obenour DR, Scavia D, Rabalais NN et al (2013) Retrospective analysis of midsummer Hypoxic area and volume in the Northern Gulf of Mexico, 1985–2011. Environ Sci Technol 47:9808–9815. doi: 10.1021/es400983g CrossRefPubMedPubMedCentralGoogle Scholar
  51. Paerl H (2009) Controlling eutrophication along the freshwater–marine continuum: dual nutrient (N and P) reductions are essential. Estuaries Coasts 32:593–601. doi: 10.1007/s12237-009-9158-8 CrossRefGoogle Scholar
  52. Paerl HW, Pinckney JL, Fear JM, Peierls BL (1998) Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse River Estuary, North Carolina, USA. Mar Ecol Prog Ser 166:17–25CrossRefGoogle Scholar
  53. Paerl HW, Valdes LM, Joyner AR et al (2004) Solving problems resulting from solutions: evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina. Env Sci Technol 38:3068–3073. doi: 10.1021/es0352350 CrossRefGoogle Scholar
  54. Prasad MBK, Long W, Zhang X et al (2011) Predicting dissolved oxygen in the Chesapeake Bay: applications and implications. Aquat Sci 73:437–451. doi: 10.1007/s00027-011-0191-x CrossRefGoogle Scholar
  55. Quigg A, Sylvan JB, Gustafson AB et al (2011) Going west: nutrient limitation of primary production in the Northern Gulf of Mexico and the importance of the Atchafalaya River. Aquat Geochem 17:519–544. doi: 10.1007/s10498-011-9134-3 CrossRefGoogle Scholar
  56. Quiñones-Rivera ZJ, Wissel B, Rabalais NN, Justic D (2010) Effects of biological and physical factors on seasonal oxygen dynamics in a stratified, eutrophic coastal ecosystem. Limnol Oceanogr 55:289–304. doi: 10.4319/lo.2010.55.1.0289 CrossRefGoogle Scholar
  57. Rabalais N, Turner RE, Dortch Q et al (2002) Nutrient-enhanced productivity in the Northern Gulf of Mexico: past, present and future. Hydrobiologia 475–476:39–63. doi: 10.1023/A:1020388503274 CrossRefGoogle Scholar
  58. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The compensation of sea water comparative and descriptive oceanography. Wiley, New York, pp 26–77Google Scholar
  59. Roelke DL, Eldridge PM, Cifuentes LA (1999) A model of phytoplankton competition for limiting and nonlimiting nutrients: implications for development of estuarine and nearshore management schemes. Estuaries 22:92–104CrossRefGoogle Scholar
  60. Scavia D, Donnelly KA (2007) Reassessing hypoxia forecasts for the Gulf of Mexico. Env Sci Technol 41:8111–8117. doi: 10.1021/es0714235 CrossRefGoogle Scholar
  61. Schiller RV, Kourafalou VH, Hogan P, Walker ND (2011) The dynamics of the Mississippi River plume: impact of topography, wind and offshore forcing on the fate of plume waters. J Geophys Res 116:C06029. doi: 10.1029/2010JC006883 CrossRefGoogle Scholar
  62. Stålnacke P, Grimvall A, Sundblad K, Tonderski A (1999) Estimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993. Environ Monit Assess 58:173–200. doi: 10.1023/A:1006073015871
  63. Stow CA, Borsuk ME (2000) Neuse river estuary modeling and monitoring project stage 1: an examination of long term nutrient data in the Neuse River watershed. Duke University, Durham, North CarolinaGoogle Scholar
  64. Stow CA, Borsuk ME, Stanley DW (2001) Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Res 35:1489–99. doi: 10.1016/S0043-1354(00)00402-4
  65. Sylvan JB, Dortch Q, Nelson DM et al (2006) Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environ Sci Technol 40:7548–7553. doi: 10.1021/es061417t CrossRefPubMedGoogle Scholar
  66. Sylvan JB, Quigg A, Tozzi S, Ammerman JW (2007) Eutrophication-induced phosphorus limitation in the Mississippi River Plume: evidence from fast repetition rate fluorometry. Limnol Ocean 52:2679–2685. doi: 10.4319/lo.2007.52.6.2679 CrossRefGoogle Scholar
  67. Turner RE, Rabalais NN, Justic D (2006) Predicting summer hypoxia in the Northern Gulf of Mexico: riverine N, P, and Si loading. Mar Pollut Bull 52:139–148. doi: 10.1016/j.marpolbul.2005.08.012 CrossRefPubMedGoogle Scholar
  68. Vahtera E, Conley D, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194. doi: 10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2 CrossRefPubMedGoogle Scholar
  69. Wang L, Justić D (2009) A modeling study of the physical processes affecting the development of seasonal hypoxia over the inner Louisiana-Texas shelf: circulation and stratification. Cont Shelf Res 29:1464–1476. doi: 10.1016/j.csr.2009.03.014 CrossRefGoogle Scholar
  70. Wang P, Linker LC, Shenk GW (2016) Using geographically isolated loading scenarios to analyze nitrogen and phosphorus exchanges and explore tailored nutrient control strategies for efficient management. Environ Model Assess 21:437–454. doi: 10.1007/s10666-015-9487-x CrossRefGoogle Scholar
  71. Wilson RF, Fennel K, Paul Mattern J (2013) Simulating sediment–water exchange of nutrients and oxygen: a comparative assessment of models against mesocosm observations. Cont Shelf Res 63:69–84. doi: 10.1016/j.csr.2013.05.003 CrossRefGoogle Scholar
  72. Wiseman WJ, Rabalais NN, Turner RE, Dinnel SP, MacNaughton A (1997) Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia. J Mar Syst 12:237–248. doi: 10.1016/S0924-7963(96)00100-5 CrossRefGoogle Scholar
  73. Wool TA, Davie SR, Rodriguez HN (2003) Development of three-dimensional hydrodynamic and water quality models to support total maximum daily load decision process for the Neuse River Estuary, North Carolina. J Water Resour Plann Manage 129:295–306. doi: 10.1061/(ASCE)0733-9496(2003)129:4(295) CrossRefGoogle Scholar
  74. Yu L, Fennel K, Laurent A (2015a) A modeling study of physical controls on hypoxia generation in the Northern Gulf of Mexico. J Geophys Res-Oceans 120:5019–5039. doi: 10.1002/2014JC010634 CrossRefGoogle Scholar
  75. Yu L, Fennel K, Laurent A, Murrell MC, Lehrter JC (2015b) Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf. Biogeosciences 12:2063–2076. doi: 10.5194/bg-12-2063-2015 CrossRefGoogle Scholar
  76. Zhang J, Gilbert D, Gooday A et al (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7:1443–1467. doi: 10.5194/bg-7-1443-2010
  77. Zhang X, Hetland RD, Marta-Almeida M, DiMarco SF (2012) A numerical investigation of the Mississippi and Atchafalaya freshwater transport, filling and flushing times on the Texas-Louisiana Shelf. J Geophys Res 117:C11009. doi: 10.1029/2012JC008108 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of OceanographyDalhousie UniversityNova ScotiaCanada

Personalised recommendations