Modeling Hypoxia and Its Ecological Consequences in Chesapeake Bay

  • Jerry D. WiggertEmail author
  • Raleigh R. Hood
  • Christopher W. Brown


The Chesapeake Bay is a valuable recreational, ecological and economic resource that is subject to environmental hazards, such as harmful algal bloom (HAB) and hypoxia, which can degrade the Bay’s health and jeopardize the viability of this important natural resource. As a step toward developing the capability to forecast such hazards, a biogeochemical version of the Chesapeake Bay Regional Ocean Modeling System (ChesROMS) has been developed. The model framework encompasses the physical, biogeochemical and bio-optical effects of river borne sediments, atmospheric deposition, nutrient and dissolved organic matter inputs, and benthic interactions throughout the Bay. These influences all contribute to the evolution of dissolved oxygen in the Bay’s waters, in particular the consistent annual development of anoxia in the bottom waters of the mid-Bay region. Here, we report on the performance of a newly developed, mechanistic dissolved oxygen formulation that has been incorporated into the ChesROMS model with the motivation to realistically resolve seasonally developing hypoxia/anoxia in the Bay. Insights into various biophysical interactions and biogeochemical processes of the Bay gained from these numerical experiments are considered, and the application of the ChesROMS model fields in short-term ecological forecast applications is discussed.


Hypoxia Anoxia Numerical modeling Ecological forecasting ROMS Chesapeake Bay 



The authors thank Wen Long, Jiangtao Xu, and Lyon Lanerolle for their contributions to the development of the ChesROMS biogeochemical model. We would also like to thank the two reviewers of our chapter for their insightful comments, which were extremely useful in improving this contribution. Funding for this work was primarily provided by the NOAA Center for Sponsored Coastal Ocean Research’s Monitoring for Event Response for Harmful Algal Bloom (MERHAB) Program (NA05NOS4781222, NA05NOS4781226, NA05NOS4781227, and NA05NOS4781229). Additional support was provided by the NOAA EcoForecasting Program, the NOAA Center for Satellite Applications and Research, and Maryland Sea Grant. This is MERHAB publication 189 and UMCES contribution no. 5138. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official NOAA or U.S. Government position, policy, or decision.


  1. Bradley PB, Lomas MW, Bronk DA (2010) Inorganic and organic nitrogen use by phytoplankton along Chesapeake Bay, measured using a flow cytometric sorting approach. Estuaries Coasts 33(4):971–984. doi: 10.1007/s12237-009-9252-y CrossRefGoogle Scholar
  2. Brown CW, Hood RR, Long W, Jacobs J, Ramers DL, Wazniak C, Wiggert JD, Wood R, Xu J (2013) Ecological forecasting in Chesapeake Bay: using a mechanistic-empirical modeling approach. J Mar Syst 113–125. doi: 10.1016/j.jmarsys.2012.12.007
  3. Codispoti LA, Christensen JP (1985) Nitrification, denitrification and nitrous oxide cycling in the Eastern Tropical South Pacific Ocean. Mar Chem 16:277–300CrossRefGoogle Scholar
  4. Costantini M, Ludsin SA, Mason DM, Zhang X, Boicourt WC, Brandt SB (2008) Effect of hypoxia on habitat quality of striped bass (Morone saxatilis) in Chesapeake Bay. Can J Fish Aquat Sci 65(5):989–1002. doi: 10.1139/f08-021 CrossRefGoogle Scholar
  5. Cowan JLW, Boynton WR (1996) Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: seasonal patterns, controlling factors and ecological significance. Estuaries 19(3):562–580CrossRefGoogle Scholar
  6. Decker MB, Brown CW, Hood RR, Purcell JE, Gross TF, Matanoski JC, Bannon RO, Setzler-Hamilton EM (2007) Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Mar Ecol Prog Ser 329:99–113. doi: 10.3354/meps329099 CrossRefGoogle Scholar
  7. Feng Y, Friedrichs MAM, Wilkin J, Tian HQ, Yang QC, Hofmann EE, Wiggert JD, Hood RR (2015) Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: model description, evaluation, and nitrogen budgets. J Geophys Res 120(8):1666–1695. doi: 10.1002/2015jg002931 CrossRefGoogle Scholar
  8. Fennel K, Wilkin J, Levin J, Moisan J, O’Reilly J, Haidvogel D (2006) Nitrogen cycling in the Middle Atlantic Bight: results from a three-dimensional model and implications for the North Atlantic nitrogen budget. Global Biogeochem Cycles 20(3). doi: 10.1029/2005GB002456
  9. Geider RJ, MacIntyre HL, Kana TM (1997) Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient-limitation and temperature. Mar Ecol Prog Ser 148(1–3):187–200CrossRefGoogle Scholar
  10. Goodrich DM, Blumberg AF (1991) The fortnightly mean circulation of Chesapeake Bay. Estuar Coast Shelf Sci 32(5):451–462CrossRefGoogle Scholar
  11. Guo XY, Valle-Levinson A (2007) Tidal effects on estuarine circulation and outflow plume in the Chesapeake Bay. Cont Shelf Res 27(1):20–42. doi: 10.1016/j.csr.2006.08.009 CrossRefGoogle Scholar
  12. Hagy JD, Boynton WR, Jasinski DA (2005) Modelling phytoplankton deposition to Chesapeake Bay sediments during winter-spring: interannual variability in relation to river flow. Estuar Coast Shelf Sci 62(1–2):25–40CrossRefGoogle Scholar
  13. Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950-2001: long-term change in relation to nutrient loading and river flow. Estuaries 27(4):634–658CrossRefGoogle Scholar
  14. Huntley ME, Lopez MDG (1992) Temperature-dependent production of marine copepods: a global synthesis. Am Nat 140(2):201–242CrossRefPubMedGoogle Scholar
  15. Jacobs JM, Rhodes M, Brown CW, Hood RR, Leight A, Long W, Wood R (2014) Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay. J Appl Microbiol 117(5):1312–1327. doi: 10.1111/jam.12624 CrossRefPubMedGoogle Scholar
  16. Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, Cornwell JC, Fisher TR, Glibert PM, Hagy JD, Harding LW, Houde ED, Kimmel DG, Miller WD, Newell RIE, Roman MR, Smith EM, Stevenson JC (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29CrossRefGoogle Scholar
  17. Kemp WM, Testa JM, Conley DJ, Gilbert D, Hagy JD (2009) Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6(12):2985–3008CrossRefGoogle Scholar
  18. Ludsin SA, Zhang X, Brandt SB, Roman MR, Boicourt WC, Mason DM, Costantini M (2009) Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: implications for food web interactions and fish recruitment. J Exp Mar Biol Ecol 381:S121–S131. doi: 10.1016/j.jembe.2009.07.016 CrossRefGoogle Scholar
  19. Meyers T, Sickles J, Dennis R, Russell K, Galloway J, Church T (2001) Atmospheric nitrogen deposition to coastal estuaries and their watersheds. In: Valigura RA, Alexander RB, Castro MS, Meyers TP, Paerl HW, Stacey PE, Turner RE (eds) Nitrogen loading in coastal water bodies: an atmospheric perspective. American Geophysical Union, Washington D. C., p 254Google Scholar
  20. Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR (1996) Denitrification in marine sediments: a model study. Global Biogeochem Cycles 10(4):661–673CrossRefGoogle Scholar
  21. Moore KA, Jarvis JC (2008) Environmental factors affecting recent summertime eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. J Coast Res 135–147. doi: 10.2112/si55-014
  22. Moore KA, Wetzel RL (2000) Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems. J Exp Mar Biol Ecol 244(1):1–28. doi: 10.1016/s0022-0981(99)00135-5 CrossRefGoogle Scholar
  23. Murphy R, Kemp W, Ball W (2011) Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries Coasts 34(6):1293–1309. doi: 10.1007/s12237-011-9413-7 CrossRefGoogle Scholar
  24. Najjar RG, Pyke CR, Adams MB, Breitburg D, Hershner C, Kemp M, Howarth R, Mulholland MR, Paolisso M, Secor D, Sellner K, Wardrop D, Wood R (2010) Potential climate-change impacts on the Chesapeake Bay. Estuar Coast Shelf Sci 86(1):1–20CrossRefGoogle Scholar
  25. National_Marine_Fisheries_Service (2011) Fisheries economics of the United States, 2009. Economics and sociocultural status and trends series. U.S. Department of Commerce, Silver Spring, MDGoogle Scholar
  26. Oguz T (2002) Role of physical processes controlling oxycline and suboxic layer structures in the Black Sea. Global Biogeochem Cycles 16(2). doi: 10.1029/2001GB001465
  27. Pace ML, Carpenter SR, Cole JJ (2015) With and without warning: managing ecosystems in a changing world. Front Ecol Environ 13(9):460–467. doi: 10.1890/150003 CrossRefGoogle Scholar
  28. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7(2):585–619CrossRefGoogle Scholar
  29. Rysgaard S, Risgaard-Petersen N, Sloth NP, Jensen K, Nielsen LP (1994) Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr 39(7):1643–1652CrossRefGoogle Scholar
  30. Sanford LP, Suttles SE, Halka JP (2001) Reconsidering the physics of the Chesapeake Bay estuarine turbidity maximum. Estuaries 24(5):655–669CrossRefGoogle Scholar
  31. Schubel J, Pritchard D (1986) Responses of upper Chesapeake Bay to variations in discharge of the Susquehanna River. Estuaries Coasts 9(4):236–249CrossRefGoogle Scholar
  32. Scully ME (2010) Wind modulation of dissolved oxygen in Chesapeake Bay. Estuaries Coasts 33(5):1164–1175. doi: 10.1007/s12237-010-9319-9 CrossRefGoogle Scholar
  33. Scully ME (2013) Physical controls on hypoxia in Chesapeake Bay: a numerical modeling study. J Geophys Res 118(3):1239–1256. doi: 10.1002/jgrc.20138 CrossRefGoogle Scholar
  34. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404CrossRefGoogle Scholar
  35. Soetaert K, Middelburg JJ, Herman PMJ, Buis K (2000) On the coupling of benthic and pelagic biogeochemical models. Earth Sci Rev 51(1–4):173–201CrossRefGoogle Scholar
  36. Willmott CJ (1981) On the validation of models. Phys Geogr 2(2):184–194. doi: 10.1080/02723646.1981.10642213 Google Scholar
  37. Xu J, Long W, Wiggert JD, Lannerolle LWJ, Brown CW, Murtugudde R, Hood RR (2011) Climate forcing and salinity variability in the Chesapeake Bay, USA. Estuaries Coasts. doi: 10.1007/s12237-011-9423-5 Google Scholar
  38. Xu JT, Hood RR, Chao SY (2005) A simple empirical optical model for simulating light attenuation variability in a partially mixed estuary. Estuaries 28(4):572–580CrossRefGoogle Scholar
  39. Zhang J, Gilbert D, Gooday AJ, Levin L, Naqvi SWA, Middelburg JJ, Scranton M, Ekau W, Pena A, Dewitte B, Oguz T, Monteiro PMS, Urban E, Rabalais NN, Ittekkot V, Kemp WM, Ulloa O, Elmgren R, Escobar-Briones E, Van der Plas AK (2010) Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7(5):1443–1467. doi: 10.5194/bg-7-1443-2010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jerry D. Wiggert
    • 1
    Email author
  • Raleigh R. Hood
    • 2
  • Christopher W. Brown
    • 3
  1. 1.Division of Marine Science, School of Ocean Science and TechnologyUniversity of Southern Mississippi, Stennis Space CenterMSUSA
  2. 2.Horn Point LaboratoryUniversity of Maryland Center for Environmental ScienceCambridgeUSA
  3. 3.Center for Satellite Applications and Research, National Oceanic and Atmospheric AdministrationCollege ParkUSA

Personalised recommendations