Skip to main content

Cannabinoids: Biosynthesis and Biotechnological Applications

Abstract

Cannabinoids are unique terpenophenolic metabolites found only in Cannabis sativa. The biosynthetic mechanism of these compounds had long been ambiguous since conventional biogenetic studies using radiolabelled precursors did not provide definitive results. On the other hand, various enzymological, molecular biological, and omics-based studies conducted over the past two decades have identified the majority of the enzymes and genes involved in the cannabinoid pathway, opening the way to the biotechnological production of pharmacologically active cannabinoids. This chapter describes the history of the biosynthetic studies, in particular those focused on the biosynthetic enzymes, and recent topics linked to cannabinoid-related biotechnology.

Keywords

  • Hairy Root
  • Hairy Root Culture
  • Glandular Trichome
  • Flavin Adenine Dinucleotide
  • Secretory Cavity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe I, Oguro S, Utsumi Y, Sano Y, Noguchi H (2005) Engineered biosynthesis of plant polyketides: chain length control in an octaketide-producing plant type III polyketide synthase. J Am Chem Soc 127:12709–12716

    CrossRef  CAS  PubMed  Google Scholar 

  • Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 27:809–838

    CrossRef  CAS  PubMed  Google Scholar 

  • Akhtar MT, Mustafa NR, Verpoorte R (2015) Hydroxylation and glycosylation of Δ9-tetrahydrocannabinol by Catharanthus roseus cell suspension culture. Biocatal Biotransform. 33:279–286

    Google Scholar 

  • Alaoui MA, Ibrahimi A, Semlali O, Tarhda Z, Marouane M, Najwa A, Soulaymani A, Fahime EE (2014) Affinity comparison of different THCA synthase to CBGA using modeling computational approaches. Bioinformation 10:33–38

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Andre CM, Hausman J-F, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:19

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008) Antibacterial cannabinoids from cannabis sativa: a structure-activity study. J Nat Prod 71:1427–1430

    CrossRef  CAS  PubMed  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    CrossRef  CAS  PubMed  Google Scholar 

  • Baker D, Pryce G, Giovannoni G, Thompson AJ (2003) The therapeutic potential of cannabis. Lancet Neurol 2:291–298

    CrossRef  CAS  PubMed  Google Scholar 

  • Beaudry CM, Malerich JP, Trauner D (2005) Biosynthetic and biomimetic electrocyclizations. Chem Rev 105:4757–4778

    CrossRef  CAS  PubMed  Google Scholar 

  • Bielecka M, Kaminski F, Adams I, Poulson H, Sloan R, Li Y, Larson TR, Winzer T, Graham IA (2014) Targeted mutation of ∆12 and ∆15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil. Plant Biotechnol J 12:613–623

    CrossRef  CAS  PubMed  Google Scholar 

  • Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477

    CrossRef  CAS  PubMed  Google Scholar 

  • Cascini F (2011) Investigations into the hypothesis of transgenic cannabis. J Forensic Sci 57:718–721

    CrossRef  PubMed  Google Scholar 

  • Chaohua C, Gonggu Z, Lining Z, Chunsheng G, Qing T, Jianhua C, Xinbo G, Dingxiang P, Jianguang S (2016) A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind Crop Prod 83:61–65

    CrossRef  Google Scholar 

  • Crombie L, Rossiter JT, Van Bruggen N, Whiting DA (1992) Deguelin cyclase, a prenyl to chromen transforming enzyme from Tephrosia vogellii. Phytochemistry 31:451–461

    CrossRef  CAS  Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    CrossRef  CAS  Google Scholar 

  • Daniel B, Pavkov-Keller T, Steiner B, Dordic A, Gutmann A, Nidetzky B, Sensen CW, van der Graaff E, Wallner S, Gruber K, Macheroux P (2015) Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in cell wall metabolism. J Biol Chem 290:18770–18781

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • de Meijer EPM, Bagatta M, Carboni A, Crucitti P, Moliterni VMC, Ranallib P, Mandolino G (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335–346

    PubMed  PubMed Central  Google Scholar 

  • Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CrossRef  CAS  PubMed  Google Scholar 

  • Dewick PM (2002) Aromatic polyketides. In: Medicinal natural products. a biosynthetic approach, Ed2. Wiley, Sussex, UK, pp 60–92

    Google Scholar 

  • de Zeeuw RA, Wijsbek J, Breimer DD, Vree TB, van Ginneken CA, van Rossum JM (1972) Cannabinoids with a propyl side chain in Cannabis. Occurrence chromatographic behavior. Science 175:778–779

    CrossRef  PubMed  Google Scholar 

  • Di Sansebastiano GP, Rizzello F, Durante M, Caretto S, Nisi R, De Paolis A (2015) Subcellular compartmentalization in protoplasts from Artemisia annua cell cultures: engineering attempts using a modified SNARE protein. J Biotechnol 202:146–152

    CrossRef  PubMed  Google Scholar 

  • Dijkman WP, de Gonzalo G, Mattevi A, Fraaije MW (2013) Flavoprotein oxidases: classification and applications. Appl Microbiol Biotechnol 97:5177–5188

    CrossRef  CAS  PubMed  Google Scholar 

  • Dittrich H, Kutchan TM (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci U S A 88:9969–9973

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–233

    CrossRef  CAS  PubMed  Google Scholar 

  • ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    CrossRef  CAS  PubMed  Google Scholar 

  • Fairbairn JW (1972) The trichomes and glands of Cannabis sativa L. Bull Narc 23:29–33

    Google Scholar 

  • Farag S, Kayser O (2015) Cannabinoids production by hairy root cultures of Cannabis sativa L. Am J Plant Sci 6:1874–1884

    Google Scholar 

  • Feeney M, Punja ZK (2003) Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell Dev Biol Plant 39:578–585

    CrossRef  CAS  Google Scholar 

  • Fellermeier M, Zenk MH (1998) Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 427:283–285

    CrossRef  CAS  PubMed  Google Scholar 

  • Fellermeier M, Eisenreich W, Bacher A, Zenk MH (2001) Biosynthesis of cannabinoids. Incorporation experiments with 13C-labeled glucoses. Eur J Biochem 268:1596–1604

    CrossRef  CAS  PubMed  Google Scholar 

  • Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in cannabis. Phytochem Rev 7:615–639

    CrossRef  CAS  Google Scholar 

  • Flores-Sanchez IJ, Peč J, Fei J, Choi YH, Dušek J, Verpoorte R (2009) Elicitation studies in cell suspension cultures of Cannabis sativa L. J Biotechnol 143:157–168

    CrossRef  CAS  PubMed  Google Scholar 

  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 109:12811–12816

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Interrante MF, Smolke CD (2015) Complete biosymnthesis of opioids in yeast. Science 349:1095–1100

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1946–1647

    Google Scholar 

  • Giacoppo S, Mandolino G, Galuppo M, Bramanti P, Mazzon E (2014) Cannabinoids: new promising agents in the treatment of neurological diseases. Molecules 19:18781–18816

    CrossRef  PubMed  Google Scholar 

  • Guzman M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755

    CrossRef  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A 104:6478–6483

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (–) Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95:8268–8273

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatoum NS, Davis WM, Elsohly MA, Turner CE (1981) Cannabichromene and delta 9-tetrahydrocannabinol: interactions relative to lethality, hypothermia and hexobarbital hypnosis. Gen Pharmacol 12:357–362

    CrossRef  CAS  PubMed  Google Scholar 

  • Kajima M, Piraux M (1982) The biogenesis of cannabinoids in Cannabis sativa. Phytochemistry 21:67–69

    CrossRef  CAS  Google Scholar 

  • Kim ES, Mahlberg PG (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am J Bot 84:336–342

    CrossRef  CAS  PubMed  Google Scholar 

  • Kimura M, Okamoto K (1970) Distribution of tetrahydrocannabinolic acid in fresh wild cannabis. Experientia 26:819–820

    CrossRef  CAS  PubMed  Google Scholar 

  • Kushima H, Shoyama Y, Nishioka I (1980) Cannabis XII: variations of cannabinoid contents in several strains of Cannabis sativa L. with leaf-age, season and sex. Chem Pharm Bull 28:594–598

    CrossRef  CAS  Google Scholar 

  • Kutchan TM, Dittrich H (1995) Characterization and mechanism of the berberine bridge enzyme, a covalently flavinylated oxidase of benzophenanthridine alkaloid biosynthesis in plants. J Biol Chem 270:24475–24481

    CrossRef  CAS  PubMed  Google Scholar 

  • Lange K, Schmid A, Julsing MK (2015) ∆9-tetrahydrocannabinolic acid synthase production in Pichia pastoris enables chemical synthesis of cannbinoids. J Biotechnol 211:68–76

    CrossRef  CAS  PubMed  Google Scholar 

  • Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernandez-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107

    CrossRef  CAS  PubMed  Google Scholar 

  • Leferinka NGH, Heutsb DPHM, Fraaijeb MW, van Berkela WJH (2008) The growing VAO flavoprotein family. Arch Biochem Biophys 474:292–301

    CrossRef  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu J, Osbourn A, Ma P (2015) MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8:689–708

    CrossRef  CAS  PubMed  Google Scholar 

  • Ma X, Panjikar S, Koepke J, Loris E, Stöckigt J (2006) The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant protein. Plant Cell 18:907–920

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA (2009) Identification of candidate genes affecting ∆9-tetrahydrocannbinol biosynthesis in Cannabis sativa. J Exp Bot 13:3715–3726

    CrossRef  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    CrossRef  CAS  PubMed  Google Scholar 

  • Mechoulam R (1970) Marihuana chemistry. Science 168:1159–1166

    CrossRef  CAS  PubMed  Google Scholar 

  • Mechoulam R, Benshabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CrossRef  CAS  PubMed  Google Scholar 

  • Mechoulam R (2000) Looking back at Cannabis research. Curr Pharm Des 6:1313–1322

    CrossRef  CAS  PubMed  Google Scholar 

  • Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MAG (2014) Biochemical strategies for enhancing the in vivo production of natural products with pharmaceutical potential. Curr Opin Biotechnol 25:86–94

    CrossRef  CAS  PubMed  Google Scholar 

  • Morimoto S, Komatsu K, Taura F, Shoyama Y (1997) Enzymological evidence for cannabichromenic acid biosynthesis. J Nat Prod 60:854–857

    CrossRef  CAS  Google Scholar 

  • Morimoto S, Komatsu K, Taura F, Shoyama Y (1998) Purification and characterization of cannabichromenic acid synthase from Cannabis sativa. Phytochemistry 49:1525–1529

    CrossRef  CAS  PubMed  Google Scholar 

  • Morimoto S, Tanaka Y, Sasaki K, Tanaka H, Fukamizu T, Shoyama Y, Shoyama Y, Taura F (2007) Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J Biol Chem 282:20739–20751

    CrossRef  CAS  PubMed  Google Scholar 

  • Munakata R, Inoue T, Koeduka T, Karamat F, Olry A, Sugiyama A, Takanashi K, Dugrand A, Froelicher Y, Tanaka R, Uto Y, Hori H, Azuma J, Hehn A, Bourgaud F, Yazaki K (2014) Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon. Plant Physiol 166:80–90

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65

    CrossRef  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    CrossRef  CAS  PubMed  Google Scholar 

  • Page JE, Boubakir Z (2011) Aromatic prenyltransferase from Cannabis. Patent WO 2011(017798):A1

    Google Scholar 

  • Peč J, Flores-Sanchez IJ, Choi YH, Verpoorte R (2010) Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by 1H-NMR spectroscopy. Biotechnol Lett 32:935–941

    CrossRef  PubMed  Google Scholar 

  • Pollastro F, Taglialatela-Scafati O, Allarà M, Muñoz E, Di Marzo V, de Petrocellis L, Appendino G (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019–2022

    CrossRef  CAS  PubMed  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25:17–22

    CrossRef  PubMed  Google Scholar 

  • Runguphan W, O’Conner SE (2009) Metabolic reprogramming of periwinkle plant culture. Nat Chem Biol 5:151–153

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorriza pumila. Plant Cell Rep 20:267–271

    CrossRef  CAS  Google Scholar 

  • Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F (2004) The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of ∆1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 279:39767–39774

    CrossRef  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582

    CrossRef  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Yamazaki M, Saito K (2008) Mechanisms of resistance to self-produced toxic secondary metabolites in plants. Phytochem Rev 7:467–477

    CrossRef  CAS  Google Scholar 

  • Sirikantaramas S, Yamazaki M, Saito K (2014) How plants avoid the toxicity of self-produced defense bioactive compounds. In: Osbourn A, Goss, RJ, Carter GT (eds) Natural products: discourse, diversity, and design. Wiley, pp 69–82

    Google Scholar 

  • Shoyama Y, Yagi M, Nishioka I, Yamauchi T (1975) Biosynthesis of cannabinoid acids. Phytochemistry 14:2189–2192

    CrossRef  CAS  Google Scholar 

  • Shoyama Y, Takeuchi A, Taura F, Tamada T, Adachi M, Kuroki R, Shoyama Y, Morimoto S (2005) Crystallization of ∆1-tetrahydrocannabinolic acid (THCA) synthase from Cannabis sativa. Acta Cryst F61:799–801

    Google Scholar 

  • Shoyama Y, Tamada T, Kurihara K, Takeuchi A, Taura F, Arai S, Blaber M, Shoyama Y, Morimoto S, Kuroki R (2012) Structur and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J Mol Biol 423:96–105

    CrossRef  CAS  PubMed  Google Scholar 

  • Springob K, Samappito S, Jindaprasert A, Schmidt J, Page JE, de-Eknamkul W, Kutchan TM (2007) A polyketide synthase of Plumbago indica that catalyzes the formation of hexaketide pyrones. FEBS J 274:406–417

    Google Scholar 

  • Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365

    CAS  PubMed  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    CrossRef  CAS  PubMed  Google Scholar 

  • Syed YY, McKeage K, Scott LJ (2014) Delta-9-Tetrahydrocannabinol/Cannabidiol (Sativex®): a review of its use in patients with moderate to severe spasticity due to multiple sclerosis. Drugs 74:563–578

    CrossRef  CAS  PubMed  Google Scholar 

  • Tantong S, Incharoensakdi A, Sirikantaramas S, Lindblad P (2016) Potential of Synechocystis PCC 6803 as a novel cyanobacterial chassis for heterologous expression of enzymes in the trans-resveratrol biosynthetic pathway. Protein Express Purif 121:163–168

    CrossRef  CAS  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 117:9766–9767

    CrossRef  CAS  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 271:17411–17416

    CrossRef  CAS  PubMed  Google Scholar 

  • Taura F, Dono E, Sirikantaramas S, Yoshimura K, Shoyama Y, Morimoto S (2007a) Production of ∆1-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochem Biophys Res Commun 361:675–680

    CrossRef  CAS  PubMed  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007b) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934

    CrossRef  CAS  PubMed  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Shoyama Y, Morimoto S (2009a) Phytocannabinoids in Cannabis sativa: Recent studies on biosynthetic enzymes. In: Lambert DM (ed) Cannabinoids in nature and medicine. Wiley-VHCA AG, pp 51–65

    Google Scholar 

  • Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009b) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066

    CrossRef  CAS  PubMed  Google Scholar 

  • Thomas A, Stevenson LA, Wease KN, Price MR, Baillie G, Ross RA, Pertwee RG (2005) Evidence that the plant cannabinoid Delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br J Pharmacol 146:917–926

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner CE, Elsohly MA (1981) Biological activity of cannabichromene, its homologs and isomers. J Clin Pharmacol 21:283S–291S

    CrossRef  CAS  PubMed  Google Scholar 

  • van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wahby I, Caba JM, Ligero F (2013) Agrobacterium infection of hemp (Cannabis sativa L.): establishment of hairy root cultures. J Plant Interact 8:312–320

    CrossRef  CAS  Google Scholar 

  • Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Medmedic Z, Treiber EL, Marks MD (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250

    CrossRef  CAS  PubMed  Google Scholar 

  • Welle R, Grisebach H (1988) Induction of phytoalexin synthesis in soybean: enzymatic cyclization of prenylated pterocarpans to glyceollin isomers. Arch Biochem Biophys 263:191–198

    CrossRef  CAS  PubMed  Google Scholar 

  • Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P, Gruber K (2008) A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4:739–741

    CrossRef  CAS  PubMed  Google Scholar 

  • Yamauchi T, Shoyama Y, Aramaki H, Azuma T, Nishioka I (1967) Tetrahydrocannabinolic acid, a genuine substance of tetrahydrocannabinol. Chem Pharm Bull 15:1075–1076

    CrossRef  CAS  PubMed  Google Scholar 

  • Yang X, Matsui T, Kodama T, Mori T, Zhou X, Taura F, Noguchi H, Abe I, Morita H (2016) Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa. FEBS J 283:1088–1106

    CrossRef  CAS  PubMed  Google Scholar 

  • Yazaki K, Sasaki K, Tsurumaru Y (2009) Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry 70:1739–1745

    CrossRef  CAS  PubMed  Google Scholar 

  • Yotoriyama M, Ito I, Takashima D, Shoyama Y, Nishioka I (1980) Plant breeding of Cannabis. Determination of cannabinoids by high-pressure liquid chromatography. Yakugaku Zasshi 100:611–614

    CrossRef  CAS  PubMed  Google Scholar 

  • Zirpel B, Stehle F, Kayser O (2015) Production of ∆9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expression ∆9-tetrahydrocannabinolic acid synthase from Cannabis sativa L. Biotechnol Lett 37:1869–1875

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the collaborators who contributed to our studies on cannabinoid biosynthesis. Research in the corresponding author’s laboratory was partially supported by grants from the Chulalongkorn Academic Advancement into Its 2nd Century Project (to SS) and Thailand Research Fund RG578008 (to SS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Supaart Sirikantaramas or Futoshi Taura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sirikantaramas, S., Taura, F. (2017). Cannabinoids: Biosynthesis and Biotechnological Applications. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_8

Download citation