Skip to main content

Chemical and Morphological Phenotypes in Breeding of Cannabis sativa L.

Abstract

This chapter has two parts. The first part details five characters that contribute to phenotypic diversity in Cannabis. Cannabinoids can be assayed by quantity (dry weight percentage of cannabinoids in harvested material) or by quality (the THC/CBD ratio, or chemotype). Cannabinoid quality is largely genetic, possibly monogenic. We dissect the monogenic inheritance model (two alleles at a single gene locus). Essential oil is composed of volatile, aromatic terpenoids. Terpenoid content varies between different varieties. Hemp seed oil consists of polyunsaturated fatty acids, including omega-6 and omega-3 fatty acids, which are under genetic control. Protein has received less attention than oil, despite hemp’s value as a protein supplement. Bast fibers are phloem (sap-conducting) cells in stalks. The second part presents the current breeding status of phenotypes for various uses. Breeding for fiber production includes monoecious cultivars, dioecious cultivars, high percentage of primary fiber, fast-retting phenotypes, and unique morphological markers in low-THC plants. Selective cross-breeding for cannabinoids includes prevalent-THC, prevalent-CBD, and cannabinoid-free plants. Relatively few cultivars have been bred specifically for seed production.

Keywords

  • Glandular Trichome
  • Bast Fiber
  • Secretory Cavity
  • Hemp Seed
  • Primary Fiber

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-54564-6_6
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-54564-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3

References

  • Allavena D (1961) Fibranova, nuova varietà di canapa ad alto contenuto di fibra. Sementi Elette 5:34–44

    Google Scholar 

  • Anderson T (1857) On the composition of hemp-seed. Trans Highland Agric Soc Scotland (Ser III) 7:128–130

    Google Scholar 

  • Anwar F, Latif S, Ashraf M (2006) Analytical characterization of hemp (Cannabis sativa) seed oil from different agro-ecological zones of Pakistan. J Am Oil Chem Soc 83:323–399

    CAS  CrossRef  Google Scholar 

  • Appendino G, Giana A, Gibbons S, Maffei M, Gnavi G, Grassi G, Sterna O (2008a) A polar cannabinoid from Cannabis sativa var. Carma. Nat Prod Commun 3:1977–1800

    CAS  Google Scholar 

  • Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008b) Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod 71:1427–1430

    CAS  PubMed  CrossRef  Google Scholar 

  • Bertucelli S (2013) Legislative controls on the cultivation of hemp. In: Bouloc P (ed) Hemp: industrial production and uses. CABI, Wallingford, UK, pp 125–127

    CrossRef  Google Scholar 

  • Bertucelli S (2015) La filière du chanvre industriel, éléments de compréhension macroéconomiques. OCL 22(6):D602

    CrossRef  Google Scholar 

  • Beutler JA, der Marderosian AH (1978) Chemotaxonomy of Cannabis. I. crossbreeding between Cannabis sativa and C. ruderalis, with analysis of cannabinoid content. Econ Bot 32:387–394

    CAS  CrossRef  Google Scholar 

  • Bielecka M, Kaminski F, Adams I, Poulson H, et al (5 additional authors) (2014) Targeted mutation of D12 and D15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil. Plant Biotechnol J 12:613–623

    Google Scholar 

  • Blade SF, Ampong-Nyarko K, Przybylski R (2005) Fatty acid and tocopherol profiles of industrial hemp cultivars grown in the high latitude prairie region of Canada. J Ind Hemp 10(2):33–43

    CAS  CrossRef  Google Scholar 

  • Bòcsa I, Karus M (1997) Der Hanfanbau: Botanik, Sorten. Anbau und Ernte. C.F, Müller, Heildelberg

    Google Scholar 

  • Bohlig JF (1840) Cannabis sativa und Urtica dioica chemisch analysiert. Jahrbuch für praktische Pharmacie und verwandte Fächer 3:1–58

    Google Scholar 

  • Bouloc P (ed) (2006) Le chanvre industriel, production et utilisation. Éditions France Agricole, Paris

    Google Scholar 

  • Bredemann G, Schwanitz F, Sengbusch RV (1956) Problems of modern hemp breeding, with particular reference to the breeding of varieties with little or no hashish. Bull Narc 8(3):31–35

    Google Scholar 

  • Briosi G, Tognini F (1894) Intorno alla anatomia della canapa (Cannabis sativa L.) parte prima—organi sessuali. Atti dell’Instituto Botanico di Pavia (Serie II) 3:91–209

    Google Scholar 

  • Briosi G, Tognini F (1897) Intorno all’anatomia della canapa (Cannabis sativa L.) parte seconda—organi vegetativi. Atti dell’Istituto Botanico di Pavia (Serie II) 4:167–329

    Google Scholar 

  • Broséus J, Anglada F, Esseiva P (2010) The differentiation of fibre- and drug type Cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools. Forensic Sci Int 200:87–92

    PubMed  CrossRef  CAS  Google Scholar 

  • Buchholz CF (1806) Beiträge zur pflanzenchemie. Analyse des hanfsamens. Neues allgemeines J der Chem 6:615–630

    Google Scholar 

  • Callaway JC, Tennilä T, Pate DW (1996) Occurrence of “omega-3” stearidonic acid (cis-6,9,12,15-octadecatetraenoic acid) in hemp (Cannabis sativa L.) seed. J Int Hemp Assoc 3(2):61–64

    Google Scholar 

  • Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140:65–72

    CrossRef  Google Scholar 

  • Callaway JC (2008) A more reliable evaluation of hemp THC levels is necessary and possible. J Ind Hemp 13:117–144

    CrossRef  Google Scholar 

  • Callaway JC, Pate DW (2009) Hempseed oil. In: Moreau RA, Kamal-Eldin A (eds) Gourmet and Health-Promoting Specialty Oils. American Oil Chemists Society Press, Urbana IL, pp 185–213

    CrossRef  Google Scholar 

  • Canapa Industriale (2010) Applicazioni biomediche di canapa. Available at: http://www.isci.it/Rovigodocument/Linee_di_ricerca/Biomedical.html

  • Capasso S (2001) Canapicoltura: passato, presente e futuro. Istituto di Studi Atellani, Napoli

    Google Scholar 

  • Casano S, Grassi G, Martini V, Michelozzi M (2011) Variations in terpene profiles of different strains of Cannabis sativa L. Acta Horticulturae 925:115–121

    CrossRef  Google Scholar 

  • Cascini F, Passerotti S, Boschi I (2013) Analysis of THCA synthase gene expression in Cannabis: a preliminary study by real-time quantitative PCR. Forensic Sci Int 231:208–212

    CAS  PubMed  CrossRef  Google Scholar 

  • Chait LD, Evans SM, Grant KA, Kamien JB, Johanson CE, Schuster CR (1988) Discriminative stimulus and subjective effects of smoked marijuana in humans. Psychopharmacology 94:206–212

    CAS  PubMed  CrossRef  Google Scholar 

  • Clarke RC, Merlin MD (2013) Cannabis evolution and ethnobotany. University of California Press, Berkeley USA

    Google Scholar 

  • Crescini F (1934) Indagine intorno all’eredità dei caratteri in Cannabis sativa L. L’Italia Agricola 71(3):1–26

    Google Scholar 

  • Crescini F (1956) La fecondazione incestuosa processo mutageno in Cannabis sativa L. Caryologia 9(l):82–92

    Google Scholar 

  • Di Candilo M, Di Bari V, Giordano I, Grassi G, Pentagelo A, Ranalli P (2000) Due nuovi genotipi di canapa da fibra: descrizione morfo-produttiva. Sementi Elette 46:25–31

    Google Scholar 

  • De Backer B, Maebe K, Werstraete AG, Charlier C (2012) Evolution of the content of THC and other major cannabinoids in drug-type Cannabis cuttings and seedling during growth of plants. J Forensic Sci 57:918–922

    PubMed  CrossRef  CAS  Google Scholar 

  • Deferne JL, Pate DW (1996) Hemp seed oil: a source of valuable essential fatty acid. J Int Hemp Assoc 3(1):1–7

    Google Scholar 

  • de Meijer EPM, van der Kamp HJ, van Eeuwijk FA (1992) Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica 62:187–200

    CrossRef  Google Scholar 

  • de Meijer EPM (1994) Diversity in Cannabis. Doctoral thesis, Wageningen Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • de Meijer EPM (1999) Cannabis germplasm resources. In: Ranalli P (ed) Advances in Hemp research, pp 133–151. Haworth Press, New York

    Google Scholar 

  • de Meijer EPM, Bagatta M, Carboni A, Crucitti P, Cristiana Moliterni VM, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335–346

    PubMed  PubMed Central  Google Scholar 

  • de Meijer EPM, Hammond KM (2005) The inheritance of chemical phenotype in Cannabis sativa L. (II): cannabigerol predominant plants. Euphytica 145:189–198

    CrossRef  CAS  Google Scholar 

  • de Meijer EPM, Hammond KM, Micheler M (2009a) The inheritance of chemical phenotype in Cannabis sativa L. (III): variation in cannabichromene production. Euphytica 165:293–311

    Google Scholar 

  • de Meijer EPM, Hammond KM, Sutton A (2009b) The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants. Euphytica 168:95–112

    CAS  CrossRef  Google Scholar 

  • de Meijer EPM (2014) The chemical phytotypes (chemotypes) of Cannabis. In: Pertwee RG (ed) Handbook of Cannabis. Oxford University Press, Oxford, UK, pp 89–110

    CrossRef  Google Scholar 

  • Dewey LH (1928) Hemp varieties of improved type are result of selection. In: USDA Yearbook 1927, pp 358–361. United States Department of Agriculture, Washington DC

    Google Scholar 

  • Easterfield TH, Wood TB (1896) The constituents of Indian hemp resin. Proc Camb Phil Soc 9:144–148

    Google Scholar 

  • Fairbairn JW, Liebmann JA (1974) The cannabinoid content of Cannabis sativa L grown in England. J Pharm Pharmacol 26:413–419

    CAS  PubMed  CrossRef  Google Scholar 

  • Fetterman PS, Seith ES, Waller CW, Guerrero O, Doorenbos NJ, Quimby MW (1971) Mississippi-grown Cannabis sativa L.: preliminary observation on chemical definition of phenotype and variations in tetrahydrocannabinol content versus age, sex, and plant part. J Pharm Sci 60:1246–1249

    CAS  PubMed  CrossRef  Google Scholar 

  • Fischedick J, Van Der Kooy F, Verpoorte R (2010) Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor. Chem Pharm Bull 58:201–207

    CAS  PubMed  CrossRef  Google Scholar 

  • Fleischmann R (1931) Hanf- und Flachskultur in Ungarn. Faserforschung 9:143–149

    Google Scholar 

  • Fournier G (1981) Les chimiotypes du chanvre (Cannabis sativa L.) Intérêt pour un programme de selection. Agronomie 1:679–688

    CrossRef  Google Scholar 

  • Fournier G, Richez-Dumanois C, Duvezin J, Mathieu JP, Paris M (1987) Identification of a new chemotype in Cannabis sativa: cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Med 53(3):277–280

    CAS  PubMed  CrossRef  Google Scholar 

  • Frankfurt S (1894) Über die Zusammensetzung der Samen und der etiolierten Keimpflanzen von Cannabis sativa und Helianthus annuus. Landwirtschaftlichen versuchs-stationen 43:143–182

    Google Scholar 

  • Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 109:12811–12816

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gorchs G, Lloveras J (2003) Current status of hemp production and transformation in Spain. J Ind Hemp 8(1):45–64

    CrossRef  Google Scholar 

  • Gorshkova LM, Senchenko GI, Virovets VG (1988) Cпocoб oцeнки pacтeний кoнoпли нa coдepжaниe кaннaбинoидныx coeдинeний [Method of evaluating hemp plants for content of cannabinoid compounds]. Peфepaтивный жypнaл 12(65):322. See also patent SU1380687

    Google Scholar 

  • Grishko NN (1935) Биoлoгия кoнoпли (The biology of cannabis). State Publishing House of Collective and State Farms Literature, Kiev-Kharkov

    Google Scholar 

  • Grotenhermen F, Karus M (1998) Indusrial hemp is not marijuana: comments on the drug potential of fiber Cannabis. J Int Hemp Assoc 5:96–101

    Google Scholar 

  • Günnewich N, Page JE, Köllner TG, Degenhardt J, Kutchan TM (2007) Functional expression and characterization of trichome-specific (-)-limonene synthase and (+)-a-pinene synthase from Cannabis sativa. Nat Prod Commun 2:223–232

    Google Scholar 

  • Guo HY, Guo MB, Hu XI, Xu YP, Wu JX, Zhang QY, Chen X, Yang M (2011) Industrial hemp variety ‘Yúnmá No 1’ seed and stalk high yield cultivation model. Southwest China J Agric Sci 24(3):888–895

    Google Scholar 

  • Happyana N, Agnolet S, Muntendam R, van Dam A, Schneider B, Kayser O (2013) Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87:51–59

    CAS  PubMed  CrossRef  Google Scholar 

  • Hazekamp A, Fischedick JT (2012) Cannabis—from cultivar to chemovar. Drug Testing and Analysis. wileyonlinelibrary.com, doi:10.1002/dta.407

  • Hemphill JK, Turner JC, Mahlberg PG (1980) Cannabinoid content of individual plant organs from different geographical strains of Cannabis sativa L. J Nat Prod 43:112–122

    CAS  CrossRef  Google Scholar 

  • Heuser O (1927) Die Hanfpflanze. In: Herzog RO (ed) Technologie der Textilfasern, Band 5, Teil 2: Hanf und Hartfasem. Julius Springer, Berlin, pp 1–102

    Google Scholar 

  • Hillig KW (2002) Letter to the editor. J Ind Hemp 7(1):5–7

    CrossRef  Google Scholar 

  • Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91(6):966–975

    CAS  PubMed  CrossRef  Google Scholar 

  • Hirata K (1927) Sex determination in hemp (Cannabis sativa L.). J Genet 19(1):65–79

    CrossRef  Google Scholar 

  • Hitzemann W (1941) Untersuchungen auf “Haschisch” bei verschiedenen Hanfsorten eigenen Anbaues in Deutschland. Arch Pharm 279:353–387

    CAS  CrossRef  Google Scholar 

  • Hoffmann W (1947) Helle Stengel—eine wertvolle Mutation des Hanfes (Cannabis sativa L.). Der Züchter 17/18(2):56–59

    Google Scholar 

  • Holoborodko P, Virovets V, Laiko I, Bertucelli S, Beherec O, Fournier G (2008) Results of efforts by French and Ukrainian breeders to reduce cannabinoid levels in industrial hemp (Cannabis sativa L.). Available at:www.interchanvre.com/docs/article-Laiko.pdf

  • Hooper D (1908) Charas of Indian hemp. Year-Book Pharm 1908:435–444

    Google Scholar 

  • House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J Agric Food Chem 58:11801–11807

    CAS  PubMed  CrossRef  Google Scholar 

  • Indian Hemp Drugs Commission (1894) Report of the Indian hemp drugs commission, 1893–1894. Government Central Printing Office, Simla

    Google Scholar 

  • Isbell H (ed) (1973) Research on cannabis (marihuana). Bull Narc 25:37–48

    Google Scholar 

  • Kim ES, Mahlberg PG (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am J Bot 84:336–342

    CAS  PubMed  CrossRef  Google Scholar 

  • Kojoma M, Seki H, Yoshida S, Muranaka T (2006) DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in “drug-type” and “fiber-type” Cannabis sativa L. Forensic Sci Int 159(2–3):132–140

    CAS  PubMed  CrossRef  Google Scholar 

  • Kriese U, Schumann E, Weber WE, Beyer M, Brühl L, Matthäus B (2004) Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 137:339–351

    CAS  CrossRef  Google Scholar 

  • Lee MA (2013) Project CBD update: the tango of supply and demand. O’Shaughnessy’s Winter/Spring 2013:22–23

    Google Scholar 

  • Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA (2009) Identification of candidate genes affecting delta-9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 60:3715–3726

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Marquart B (1919) Der Hanfbau. Paul Parey, Berlin

    Google Scholar 

  • Matchett JR, Levine J, Benjamin L, Robinson BB, Pope OA (1940) Marihuana investigations. II, the effect of variety, maturity, fertilizer treatment and sex on the intensity of response to the Beam tests. J Am Pharm Assoc (Sci Edn) 29:399–404

    CAS  CrossRef  Google Scholar 

  • McKernan KJ, Helbert Y, Tadigotla V, McLaughlin S, Spangler J, Zhang L, Smith D (2016) Single molecule sequencing of THCA synthase reveals copy number variation in modern drug-type Cannabis sativa L. BioRxiv. doi:10.1101/028654

    Google Scholar 

  • McPartland JM, Pruitt PL (1999) Side effects of pharmaceuticals not elicited by comparable herbal medicines: the case of tetrahydrocannabinol and marijuana. Altern Ther Health Med 5:57–62

    CAS  PubMed  Google Scholar 

  • McPartland JM, Mediavilla V (2001) Nichcannabinoide Inhaltsstoffe von Cannabis. In: Grotenhermen F (ed) Cannabis und Cannabinoide. Verlag Hans Huber, Bern, Switzerland, pp 429–436

    Google Scholar 

  • Mediavilla V, Steinemann S (1997) Essential oil of Cannabis sativa L. strains. J Int Hemp Assoc 4(2):82–84

    Google Scholar 

  • Mediavilla V, Bassetti P, Leupin M, Mosimann E (1999) Agronomic characteristics of some hemp genotypes. J Int Hemp Assoc 6(45):48–53

    Google Scholar 

  • Meier C, Mediavilla V (1998) Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. J Ind Hemp Assoc 5(1):16–20

    Google Scholar 

  • Mölleken H, Theimer RR (1997a) Survey of minor fatty acids in Cannabis sativa L. fruits of various origins. J Ind Hemp Assoc 4(1):13–17

    Google Scholar 

  • Mölleken H, Theimer RR (1997b) Evaluierung von C. sativa saatgutherkünften im Hinblick auf ein verbesserte Ölqualität, pp. 485–499. In: Bioresource Hemp 97, Proceedings of the Symposium, Frankfurt, Germany. nova-Institute, Köln, Germany

    Google Scholar 

  • Neuer HV, Sengbusch RV (1943) Die Geschlechtsvererbung bei Hanf und die Züchtung eines monöcischen Hanfes. Der Züchter (Zeitschrift für theoretische und angewandte Genetik) 15(3):49–62

    CrossRef  Google Scholar 

  • Onofri C, de Meijer EPM, Mandolino G (2015) Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 116:57–68

    CAS  PubMed  CrossRef  Google Scholar 

  • O’Shaughnessy WB (1839) Extract from a memoir on the preparation of the Indian hemp, or gunjah, (Cannabis indica) their effects on the animal system in health, and their utility in the treatment of tetanus and other convulsive diseases. J Asiatic Soc Bengal 8(732–744):838–851

    Google Scholar 

  • Pacifico D, Miselli F, Micheler M, Carboni A, Moschella A, Mandolino G (2008) Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 160:231–240

    CAS  CrossRef  Google Scholar 

  • Pagani A, Scala F, Chianese G, Grassi G, Appendino G, Taglialatela-Scafati O (2011) Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L. Tetrahedron 67:3369–3373

    CAS  CrossRef  Google Scholar 

  • Personne J (Robiquet E, ed.) (1857) Rapport sur le concours relatif à l’analyse du chanvre présente au nom de la Société de Pharmacie. J Pharm Chim (Ser 3) 31:46–51

    Google Scholar 

  • Pollastro F, Taglialatela-Scafati O, Allarà M, Muñoz E, Di Marzo V, De Petrocellis L, Appendino G (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019–2022

    CAS  PubMed  CrossRef  Google Scholar 

  • Poortman van der Meer AJ, Huizer H (1999) A contribution to the improvement of accuracy in the quantitation of THC. Forensic Sci Int 101:1–8

    CAS  PubMed  CrossRef  Google Scholar 

  • Potter D (2004) Growth and morphology of medical cannabis. In: Guy G, Robson R, Strong K, Whittle B (eds) The medicinal use of Cannabis. Royal Society of Pharmacists, London, pp 17–54

    Google Scholar 

  • Potter D (2009) The propagation, characterisation and optimisation of Cannabis sativa L. as a phytopharmaceutical. Doctoral thesis, King’s College, London

    Google Scholar 

  • Prain D (1893) Report on the cultivation and use of gánjá. Bengal Secretariat Press, Calcutta

    Google Scholar 

  • Procter W (1864) On a test for the resin of Cannabis indica. Proc Am Pharm Assoc 12:244–248

    Google Scholar 

  • Rice S, Koziel JA (2015) Characterizing the smell of marijuana by odor impact of volatile compounds: an application of simultaneous chemical and sensory analysis. PLoS ONE 10(12):e0144160

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ranalli P, Casarini B (1988) Canapa: il ritorno di una coltura prestigiosa. Avenue Media Press, Bologna

    Google Scholar 

  • Robinson BB (1941) Marihuana investigations. IV. A study of marihuana toxicity on goldfish applied to hemp breeding. J Am Pharm Assoc (Sci Edn) 30:616–619

    CAS  CrossRef  Google Scholar 

  • Romocea JE, Grassi G (2010) In vivo culture of hemp culture for textile and pharmaceutical industry. In: Conference Proceedings, Innovative solutions for sustainable development of textiles industry. University of Oradea, Romania

    Google Scholar 

  • Roux F (1886) Etude sur la cannabine. Bulletin general de Thérapeutique Médicale et Chirugicale 111:492–514

    Google Scholar 

  • Ross SA, ElSohly HN, ElKashoury EA, ElSohly MA (1996) Fatty acids of cannabis seeds. Phytochem Anal 7:279–283

    CAS  CrossRef  Google Scholar 

  • Russo EB (2011) Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163:1344–1364

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Savelli R (1932) Studien über den Ferrarischen Hanf. Der Züchter 4:286–290

    Google Scholar 

  • Schaedler C (1883) Die Technologie der Fette und Oele: Technologie der Fette und Oele des Pflanzen- und Thierreichs. Polytechnische Buchhandlung, Berlin

    Google Scholar 

  • Serebriakova-Zinserling TY (1928) Paнняя кoнoпли (Early hemp). Trudy po Prikladnoi Botanike, Genetike i Selektsii 18(1):407–410

    Google Scholar 

  • Sengbusch RV (1956) Le chanvre “Fibrimon” et “Fibridia.” In: Proceedings of the second international Flax and Hemp Congress, Courtrai, June 5–9 1956, pp 16-24. Berichte des Instituts für Bastfaserforschung, Wageningen, The Netherlands

    Google Scholar 

  • Shelenga TV, Grigory’ev SV, Illarionova KV (2012) Биoxимичecкaя xapaктepиcтикa ceмян кoнoпли (Cannabis sativa L.) из paзличныx peгиoнoв Poccии [Biochemical characterization of hemp seed (Cannabis sativa L.) from different regions of Russia]. Tpyды пo пpиклaднoй бoтaникe, гeнeтикe и ceлeкции 170:212–219

    Google Scholar 

  • Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582

    CAS  PubMed  CrossRef  Google Scholar 

  • Small E, Beckstead HD (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 36:144–165

    CAS  PubMed  Google Scholar 

  • Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25(4):405–435

    CrossRef  Google Scholar 

  • Small E, Marcus D (2000) Hemp germplasm trials in Canada. Bioresource Hemp, 3rd International Symposium, Wolfsburg, Germany. Online proceedings: www.hemphasis.com/files/publications/biorpap.htm

  • Small E, Jui P, Lefkovitch LP (1976) A numerical taxonomic analysis of Cannabis with special reference to species delimitation. Syst Bot 1:67–84

    CAS  CrossRef  Google Scholar 

  • Snegireva A, Chernova T, Ageeva M, Lev-Yadun S, Gorshkova T (2015) Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants 7: plv061

    Google Scholar 

  • Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365

    CAS  PubMed  Google Scholar 

  • Taglialatela-Scafati O, Pagani A, Scala F, De Petrocellis L, Di Marzo V, Grassi G, Appendino G (2010) Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur J Org Chem 11:2067–2072

    CrossRef  CAS  Google Scholar 

  • Takashima D (1982) On the development of non-toxic hemp ‘White Tochigi’ (in Japanese). Tochigi Prefectural Agric Exp Stat Rep 28:47–54

    Google Scholar 

  • Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 117:9766–9767

    CAS  CrossRef  Google Scholar 

  • Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 271:17411–17416

    CAS  PubMed  CrossRef  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa L. FEBS Lett 581:2929–2934

    CAS  PubMed  CrossRef  Google Scholar 

  • Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583(12):2061–2066

    CAS  PubMed  CrossRef  Google Scholar 

  • Theimer RR, Mölleken H (1995) “Analysis of the oil from different hemp (Cannabis sativa L.) cultivars—perspectives for economical utilization,” pages 536–543 in Bioresource Hemp, Proceedings of the Symposium, Frankfurt, Germany. nova-Institute, Köln, Germany

    Google Scholar 

  • Thichak S, Natakankitkul S, Chansakaow S, Chutipongvivate S (2011) Identification of drug-type and fiber-type of hemp (Cannabis sativa L.) by multiplex PCR. Chiang Mai J Sci 38(4):608–618

    Google Scholar 

  • Tubaro A, Giangaspero A, Sosa S, Negri R, Grassi G, Casano S, Della Loggia R, Appendino G (2010) Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia 81:816–819

    CAS  PubMed  CrossRef  Google Scholar 

  • Turner CE, Elsohly MA, Cheng PC, Lewis G (1979) Constituents of Cannabis sativa L.; XIV: intrinsic problems in classifying Cannabis based on a single cannabinoid analysis. J Nat Prod 42:317–319

    CrossRef  Google Scholar 

  • Valente L (1880) Sull’essenza di canapa. Gazzetta Chimica Italiana 10:479–481

    Google Scholar 

  • Valente L (1881) Studi sull’essenza di canapa. Atti della Reale Accademia dei Lincei (Series 3) 5: 126–128 (reprinted as “Sull’idrocarburo estratto dalla canapa”. Gazzetta Chimica Italiana 11(1881):196-198)

    Google Scholar 

  • Valieri R (1887) Sulla canapa nostrana e suoi preparati in sostituzione della Cannabis indica. Stabilimento tipografico dell’unione, Naples

    Google Scholar 

  • Van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa L. Genome Biol 12(10):R102

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Virovets VG (1998) Interview. J Int Hemp Assoc 5:32–34

    Google Scholar 

  • Watson DP (1985) Cultivator’s choice catalog #4. Self-published, Amsterdam, Holland

    Google Scholar 

  • Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL, Marks MD (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250

    CAS  PubMed  CrossRef  Google Scholar 

  • Werz O, Seegers J, Schaible AM, Weinigel C, Barz D, Koeberle A, Allegrone G, Pollastro F, Zampieri L, Grassi G, Appendino G (2014) Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. Pharma Nutrition 2:53–60

    CAS  CrossRef  Google Scholar 

  • Wherrell O (1897) Hemp-seed and hemp-seed oil. Bull Pharm 11:340–342

    Google Scholar 

  • Windsor HH (ed) (1938) New billion-dollar crop. Popular Mech Mag 69(2):238–239, 144A

    Google Scholar 

  • Yotoriyama M, Ito I, Takashima D, Shoyama Y, Nishioka I (1980) Plant breeding of Cannabis. Determination of cannabinoids by high-pressure liquid chromatography. Yakugaku Zasshi 100:611–614

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European project Multihemp, FP7- Project number 311849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Grassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grassi, G., McPartland, J.M. (2017). Chemical and Morphological Phenotypes in Breeding of Cannabis sativa L.. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_6

Download citation