Advertisement

Chemical and Morphological Phenotypes in Breeding of Cannabis sativa L.

  • Gianpaolo GrassiEmail author
  • John M. McPartland
Chapter

Abstract

This chapter has two parts. The first part details five characters that contribute to phenotypic diversity in Cannabis. Cannabinoids can be assayed by quantity (dry weight percentage of cannabinoids in harvested material) or by quality (the THC/CBD ratio, or chemotype). Cannabinoid quality is largely genetic, possibly monogenic. We dissect the monogenic inheritance model (two alleles at a single gene locus). Essential oil is composed of volatile, aromatic terpenoids. Terpenoid content varies between different varieties. Hemp seed oil consists of polyunsaturated fatty acids, including omega-6 and omega-3 fatty acids, which are under genetic control. Protein has received less attention than oil, despite hemp’s value as a protein supplement. Bast fibers are phloem (sap-conducting) cells in stalks. The second part presents the current breeding status of phenotypes for various uses. Breeding for fiber production includes monoecious cultivars, dioecious cultivars, high percentage of primary fiber, fast-retting phenotypes, and unique morphological markers in low-THC plants. Selective cross-breeding for cannabinoids includes prevalent-THC, prevalent-CBD, and cannabinoid-free plants. Relatively few cultivars have been bred specifically for seed production.

Keywords

Glandular Trichome Bast Fiber Secretory Cavity Hemp Seed Primary Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the European project Multihemp, FP7- Project number 311849.

References

  1. Allavena D (1961) Fibranova, nuova varietà di canapa ad alto contenuto di fibra. Sementi Elette 5:34–44Google Scholar
  2. Anderson T (1857) On the composition of hemp-seed. Trans Highland Agric Soc Scotland (Ser III) 7:128–130Google Scholar
  3. Anwar F, Latif S, Ashraf M (2006) Analytical characterization of hemp (Cannabis sativa) seed oil from different agro-ecological zones of Pakistan. J Am Oil Chem Soc 83:323–399CrossRefGoogle Scholar
  4. Appendino G, Giana A, Gibbons S, Maffei M, Gnavi G, Grassi G, Sterna O (2008a) A polar cannabinoid from Cannabis sativa var. Carma. Nat Prod Commun 3:1977–1800Google Scholar
  5. Appendino G, Gibbons S, Giana A, Pagani A, Grassi G, Stavri M, Smith E, Rahman MM (2008b) Antibacterial cannabinoids from Cannabis sativa: a structure-activity study. J Nat Prod 71:1427–1430PubMedCrossRefGoogle Scholar
  6. Bertucelli S (2013) Legislative controls on the cultivation of hemp. In: Bouloc P (ed) Hemp: industrial production and uses. CABI, Wallingford, UK, pp 125–127CrossRefGoogle Scholar
  7. Bertucelli S (2015) La filière du chanvre industriel, éléments de compréhension macroéconomiques. OCL 22(6):D602CrossRefGoogle Scholar
  8. Beutler JA, der Marderosian AH (1978) Chemotaxonomy of Cannabis. I. crossbreeding between Cannabis sativa and C. ruderalis, with analysis of cannabinoid content. Econ Bot 32:387–394CrossRefGoogle Scholar
  9. Bielecka M, Kaminski F, Adams I, Poulson H, et al (5 additional authors) (2014) Targeted mutation of D12 and D15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil. Plant Biotechnol J 12:613–623Google Scholar
  10. Blade SF, Ampong-Nyarko K, Przybylski R (2005) Fatty acid and tocopherol profiles of industrial hemp cultivars grown in the high latitude prairie region of Canada. J Ind Hemp 10(2):33–43CrossRefGoogle Scholar
  11. Bòcsa I, Karus M (1997) Der Hanfanbau: Botanik, Sorten. Anbau und Ernte. C.F, Müller, HeildelbergGoogle Scholar
  12. Bohlig JF (1840) Cannabis sativa und Urtica dioica chemisch analysiert. Jahrbuch für praktische Pharmacie und verwandte Fächer 3:1–58Google Scholar
  13. Bouloc P (ed) (2006) Le chanvre industriel, production et utilisation. Éditions France Agricole, ParisGoogle Scholar
  14. Bredemann G, Schwanitz F, Sengbusch RV (1956) Problems of modern hemp breeding, with particular reference to the breeding of varieties with little or no hashish. Bull Narc 8(3):31–35Google Scholar
  15. Briosi G, Tognini F (1894) Intorno alla anatomia della canapa (Cannabis sativa L.) parte prima—organi sessuali. Atti dell’Instituto Botanico di Pavia (Serie II) 3:91–209Google Scholar
  16. Briosi G, Tognini F (1897) Intorno all’anatomia della canapa (Cannabis sativa L.) parte seconda—organi vegetativi. Atti dell’Istituto Botanico di Pavia (Serie II) 4:167–329Google Scholar
  17. Broséus J, Anglada F, Esseiva P (2010) The differentiation of fibre- and drug type Cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools. Forensic Sci Int 200:87–92PubMedCrossRefGoogle Scholar
  18. Buchholz CF (1806) Beiträge zur pflanzenchemie. Analyse des hanfsamens. Neues allgemeines J der Chem 6:615–630Google Scholar
  19. Callaway JC, Tennilä T, Pate DW (1996) Occurrence of “omega-3” stearidonic acid (cis-6,9,12,15-octadecatetraenoic acid) in hemp (Cannabis sativa L.) seed. J Int Hemp Assoc 3(2):61–64Google Scholar
  20. Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140:65–72CrossRefGoogle Scholar
  21. Callaway JC (2008) A more reliable evaluation of hemp THC levels is necessary and possible. J Ind Hemp 13:117–144CrossRefGoogle Scholar
  22. Callaway JC, Pate DW (2009) Hempseed oil. In: Moreau RA, Kamal-Eldin A (eds) Gourmet and Health-Promoting Specialty Oils. American Oil Chemists Society Press, Urbana IL, pp 185–213CrossRefGoogle Scholar
  23. Canapa Industriale (2010) Applicazioni biomediche di canapa. Available at: http://www.isci.it/Rovigodocument/Linee_di_ricerca/Biomedical.html
  24. Capasso S (2001) Canapicoltura: passato, presente e futuro. Istituto di Studi Atellani, NapoliGoogle Scholar
  25. Casano S, Grassi G, Martini V, Michelozzi M (2011) Variations in terpene profiles of different strains of Cannabis sativa L. Acta Horticulturae 925:115–121CrossRefGoogle Scholar
  26. Cascini F, Passerotti S, Boschi I (2013) Analysis of THCA synthase gene expression in Cannabis: a preliminary study by real-time quantitative PCR. Forensic Sci Int 231:208–212PubMedCrossRefGoogle Scholar
  27. Chait LD, Evans SM, Grant KA, Kamien JB, Johanson CE, Schuster CR (1988) Discriminative stimulus and subjective effects of smoked marijuana in humans. Psychopharmacology 94:206–212PubMedCrossRefGoogle Scholar
  28. Clarke RC, Merlin MD (2013) Cannabis evolution and ethnobotany. University of California Press, Berkeley USAGoogle Scholar
  29. Crescini F (1934) Indagine intorno all’eredità dei caratteri in Cannabis sativa L. L’Italia Agricola 71(3):1–26Google Scholar
  30. Crescini F (1956) La fecondazione incestuosa processo mutageno in Cannabis sativa L. Caryologia 9(l):82–92Google Scholar
  31. Di Candilo M, Di Bari V, Giordano I, Grassi G, Pentagelo A, Ranalli P (2000) Due nuovi genotipi di canapa da fibra: descrizione morfo-produttiva. Sementi Elette 46:25–31Google Scholar
  32. De Backer B, Maebe K, Werstraete AG, Charlier C (2012) Evolution of the content of THC and other major cannabinoids in drug-type Cannabis cuttings and seedling during growth of plants. J Forensic Sci 57:918–922PubMedCrossRefGoogle Scholar
  33. Deferne JL, Pate DW (1996) Hemp seed oil: a source of valuable essential fatty acid. J Int Hemp Assoc 3(1):1–7Google Scholar
  34. de Meijer EPM, van der Kamp HJ, van Eeuwijk FA (1992) Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica 62:187–200CrossRefGoogle Scholar
  35. de Meijer EPM (1994) Diversity in Cannabis. Doctoral thesis, Wageningen Agricultural University, Wageningen, The NetherlandsGoogle Scholar
  36. de Meijer EPM (1999) Cannabis germplasm resources. In: Ranalli P (ed) Advances in Hemp research, pp 133–151. Haworth Press, New YorkGoogle Scholar
  37. de Meijer EPM, Bagatta M, Carboni A, Crucitti P, Cristiana Moliterni VM, Ranalli P, Mandolino G (2003) The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163:335–346PubMedPubMedCentralGoogle Scholar
  38. de Meijer EPM, Hammond KM (2005) The inheritance of chemical phenotype in Cannabis sativa L. (II): cannabigerol predominant plants. Euphytica 145:189–198CrossRefGoogle Scholar
  39. de Meijer EPM, Hammond KM, Micheler M (2009a) The inheritance of chemical phenotype in Cannabis sativa L. (III): variation in cannabichromene production. Euphytica 165:293–311Google Scholar
  40. de Meijer EPM, Hammond KM, Sutton A (2009b) The inheritance of chemical phenotype in Cannabis sativa L. (IV): cannabinoid-free plants. Euphytica 168:95–112CrossRefGoogle Scholar
  41. de Meijer EPM (2014) The chemical phytotypes (chemotypes) of Cannabis. In: Pertwee RG (ed) Handbook of Cannabis. Oxford University Press, Oxford, UK, pp 89–110CrossRefGoogle Scholar
  42. Dewey LH (1928) Hemp varieties of improved type are result of selection. In: USDA Yearbook 1927, pp 358–361. United States Department of Agriculture, Washington DCGoogle Scholar
  43. Easterfield TH, Wood TB (1896) The constituents of Indian hemp resin. Proc Camb Phil Soc 9:144–148Google Scholar
  44. Fairbairn JW, Liebmann JA (1974) The cannabinoid content of Cannabis sativa L grown in England. J Pharm Pharmacol 26:413–419PubMedCrossRefGoogle Scholar
  45. Fetterman PS, Seith ES, Waller CW, Guerrero O, Doorenbos NJ, Quimby MW (1971) Mississippi-grown Cannabis sativa L.: preliminary observation on chemical definition of phenotype and variations in tetrahydrocannabinol content versus age, sex, and plant part. J Pharm Sci 60:1246–1249PubMedCrossRefGoogle Scholar
  46. Fischedick J, Van Der Kooy F, Verpoorte R (2010) Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor. Chem Pharm Bull 58:201–207PubMedCrossRefGoogle Scholar
  47. Fleischmann R (1931) Hanf- und Flachskultur in Ungarn. Faserforschung 9:143–149Google Scholar
  48. Fournier G (1981) Les chimiotypes du chanvre (Cannabis sativa L.) Intérêt pour un programme de selection. Agronomie 1:679–688CrossRefGoogle Scholar
  49. Fournier G, Richez-Dumanois C, Duvezin J, Mathieu JP, Paris M (1987) Identification of a new chemotype in Cannabis sativa: cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Med 53(3):277–280PubMedCrossRefGoogle Scholar
  50. Frankfurt S (1894) Über die Zusammensetzung der Samen und der etiolierten Keimpflanzen von Cannabis sativa und Helianthus annuus. Landwirtschaftlichen versuchs-stationen 43:143–182Google Scholar
  51. Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 109:12811–12816PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gorchs G, Lloveras J (2003) Current status of hemp production and transformation in Spain. J Ind Hemp 8(1):45–64CrossRefGoogle Scholar
  53. Gorshkova LM, Senchenko GI, Virovets VG (1988) Cпocoб oцeнки pacтeний кoнoпли нa coдepжaниe кaннaбинoидныx coeдинeний [Method of evaluating hemp plants for content of cannabinoid compounds]. Peфepaтивный жypнaл 12(65):322. See also patent SU1380687Google Scholar
  54. Grishko NN (1935) Биoлoгия кoнoпли (The biology of cannabis). State Publishing House of Collective and State Farms Literature, Kiev-KharkovGoogle Scholar
  55. Grotenhermen F, Karus M (1998) Indusrial hemp is not marijuana: comments on the drug potential of fiber Cannabis. J Int Hemp Assoc 5:96–101Google Scholar
  56. Günnewich N, Page JE, Köllner TG, Degenhardt J, Kutchan TM (2007) Functional expression and characterization of trichome-specific (-)-limonene synthase and (+)-a-pinene synthase from Cannabis sativa. Nat Prod Commun 2:223–232Google Scholar
  57. Guo HY, Guo MB, Hu XI, Xu YP, Wu JX, Zhang QY, Chen X, Yang M (2011) Industrial hemp variety ‘Yúnmá No 1’ seed and stalk high yield cultivation model. Southwest China J Agric Sci 24(3):888–895Google Scholar
  58. Happyana N, Agnolet S, Muntendam R, van Dam A, Schneider B, Kayser O (2013) Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry 87:51–59PubMedCrossRefGoogle Scholar
  59. Hazekamp A, Fischedick JT (2012) Cannabis—from cultivar to chemovar. Drug Testing and Analysis. wileyonlinelibrary.com, doi: 10.1002/dta.407
  60. Hemphill JK, Turner JC, Mahlberg PG (1980) Cannabinoid content of individual plant organs from different geographical strains of Cannabis sativa L. J Nat Prod 43:112–122CrossRefGoogle Scholar
  61. Heuser O (1927) Die Hanfpflanze. In: Herzog RO (ed) Technologie der Textilfasern, Band 5, Teil 2: Hanf und Hartfasem. Julius Springer, Berlin, pp 1–102Google Scholar
  62. Hillig KW (2002) Letter to the editor. J Ind Hemp 7(1):5–7CrossRefGoogle Scholar
  63. Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91(6):966–975PubMedCrossRefGoogle Scholar
  64. Hirata K (1927) Sex determination in hemp (Cannabis sativa L.). J Genet 19(1):65–79CrossRefGoogle Scholar
  65. Hitzemann W (1941) Untersuchungen auf “Haschisch” bei verschiedenen Hanfsorten eigenen Anbaues in Deutschland. Arch Pharm 279:353–387CrossRefGoogle Scholar
  66. Hoffmann W (1947) Helle Stengel—eine wertvolle Mutation des Hanfes (Cannabis sativa L.). Der Züchter 17/18(2):56–59Google Scholar
  67. Holoborodko P, Virovets V, Laiko I, Bertucelli S, Beherec O, Fournier G (2008) Results of efforts by French and Ukrainian breeders to reduce cannabinoid levels in industrial hemp (Cannabis sativa L.). Available at:www.interchanvre.com/docs/article-Laiko.pdf
  68. Hooper D (1908) Charas of Indian hemp. Year-Book Pharm 1908:435–444Google Scholar
  69. House JD, Neufeld J, Leson G (2010) Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility-corrected amino acid score method. J Agric Food Chem 58:11801–11807PubMedCrossRefGoogle Scholar
  70. Indian Hemp Drugs Commission (1894) Report of the Indian hemp drugs commission, 1893–1894. Government Central Printing Office, SimlaGoogle Scholar
  71. Isbell H (ed) (1973) Research on cannabis (marihuana). Bull Narc 25:37–48Google Scholar
  72. Kim ES, Mahlberg PG (1997) Immunochemical localization of tetrahydrocannabinol (THC) in cryofixed glandular trichomes of Cannabis (Cannabaceae). Am J Bot 84:336–342PubMedCrossRefGoogle Scholar
  73. Kojoma M, Seki H, Yoshida S, Muranaka T (2006) DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in “drug-type” and “fiber-type” Cannabis sativa L. Forensic Sci Int 159(2–3):132–140PubMedCrossRefGoogle Scholar
  74. Kriese U, Schumann E, Weber WE, Beyer M, Brühl L, Matthäus B (2004) Oil content, tocopherol composition and fatty acid patterns of the seeds of 51 Cannabis sativa L. genotypes. Euphytica 137:339–351CrossRefGoogle Scholar
  75. Lee MA (2013) Project CBD update: the tango of supply and demand. O’Shaughnessy’s Winter/Spring 2013:22–23Google Scholar
  76. Marks MD, Tian L, Wenger JP, Omburo SN, Soto-Fuentes W, He J, Gang DR, Weiblen GD, Dixon RA (2009) Identification of candidate genes affecting delta-9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J Exp Bot 60:3715–3726PubMedPubMedCentralCrossRefGoogle Scholar
  77. Marquart B (1919) Der Hanfbau. Paul Parey, BerlinGoogle Scholar
  78. Matchett JR, Levine J, Benjamin L, Robinson BB, Pope OA (1940) Marihuana investigations. II, the effect of variety, maturity, fertilizer treatment and sex on the intensity of response to the Beam tests. J Am Pharm Assoc (Sci Edn) 29:399–404CrossRefGoogle Scholar
  79. McKernan KJ, Helbert Y, Tadigotla V, McLaughlin S, Spangler J, Zhang L, Smith D (2016) Single molecule sequencing of THCA synthase reveals copy number variation in modern drug-type Cannabis sativa L. BioRxiv. doi: 10.1101/028654 Google Scholar
  80. McPartland JM, Pruitt PL (1999) Side effects of pharmaceuticals not elicited by comparable herbal medicines: the case of tetrahydrocannabinol and marijuana. Altern Ther Health Med 5:57–62PubMedGoogle Scholar
  81. McPartland JM, Mediavilla V (2001) Nichcannabinoide Inhaltsstoffe von Cannabis. In: Grotenhermen F (ed) Cannabis und Cannabinoide. Verlag Hans Huber, Bern, Switzerland, pp 429–436Google Scholar
  82. Mediavilla V, Steinemann S (1997) Essential oil of Cannabis sativa L. strains. J Int Hemp Assoc 4(2):82–84Google Scholar
  83. Mediavilla V, Bassetti P, Leupin M, Mosimann E (1999) Agronomic characteristics of some hemp genotypes. J Int Hemp Assoc 6(45):48–53Google Scholar
  84. Meier C, Mediavilla V (1998) Factors influencing the yield and the quality of hemp (Cannabis sativa L.) essential oil. J Ind Hemp Assoc 5(1):16–20Google Scholar
  85. Mölleken H, Theimer RR (1997a) Survey of minor fatty acids in Cannabis sativa L. fruits of various origins. J Ind Hemp Assoc 4(1):13–17Google Scholar
  86. Mölleken H, Theimer RR (1997b) Evaluierung von C. sativa saatgutherkünften im Hinblick auf ein verbesserte Ölqualität, pp. 485–499. In: Bioresource Hemp 97, Proceedings of the Symposium, Frankfurt, Germany. nova-Institute, Köln, GermanyGoogle Scholar
  87. Neuer HV, Sengbusch RV (1943) Die Geschlechtsvererbung bei Hanf und die Züchtung eines monöcischen Hanfes. Der Züchter (Zeitschrift für theoretische und angewandte Genetik) 15(3):49–62CrossRefGoogle Scholar
  88. Onofri C, de Meijer EPM, Mandolino G (2015) Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 116:57–68PubMedCrossRefGoogle Scholar
  89. O’Shaughnessy WB (1839) Extract from a memoir on the preparation of the Indian hemp, or gunjah, (Cannabis indica) their effects on the animal system in health, and their utility in the treatment of tetanus and other convulsive diseases. J Asiatic Soc Bengal 8(732–744):838–851Google Scholar
  90. Pacifico D, Miselli F, Micheler M, Carboni A, Moschella A, Mandolino G (2008) Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 160:231–240CrossRefGoogle Scholar
  91. Pagani A, Scala F, Chianese G, Grassi G, Appendino G, Taglialatela-Scafati O (2011) Cannabioxepane, a novel tetracyclic cannabinoid from hemp, Cannabis sativa L. Tetrahedron 67:3369–3373CrossRefGoogle Scholar
  92. Personne J (Robiquet E, ed.) (1857) Rapport sur le concours relatif à l’analyse du chanvre présente au nom de la Société de Pharmacie. J Pharm Chim (Ser 3) 31:46–51Google Scholar
  93. Pollastro F, Taglialatela-Scafati O, Allarà M, Muñoz E, Di Marzo V, De Petrocellis L, Appendino G (2011) Bioactive prenylogous cannabinoid from fiber hemp (Cannabis sativa). J Nat Prod 74:2019–2022PubMedCrossRefGoogle Scholar
  94. Poortman van der Meer AJ, Huizer H (1999) A contribution to the improvement of accuracy in the quantitation of THC. Forensic Sci Int 101:1–8PubMedCrossRefGoogle Scholar
  95. Potter D (2004) Growth and morphology of medical cannabis. In: Guy G, Robson R, Strong K, Whittle B (eds) The medicinal use of Cannabis. Royal Society of Pharmacists, London, pp 17–54Google Scholar
  96. Potter D (2009) The propagation, characterisation and optimisation of Cannabis sativa L. as a phytopharmaceutical. Doctoral thesis, King’s College, LondonGoogle Scholar
  97. Prain D (1893) Report on the cultivation and use of gánjá. Bengal Secretariat Press, CalcuttaGoogle Scholar
  98. Procter W (1864) On a test for the resin of Cannabis indica. Proc Am Pharm Assoc 12:244–248Google Scholar
  99. Rice S, Koziel JA (2015) Characterizing the smell of marijuana by odor impact of volatile compounds: an application of simultaneous chemical and sensory analysis. PLoS ONE 10(12):e0144160PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ranalli P, Casarini B (1988) Canapa: il ritorno di una coltura prestigiosa. Avenue Media Press, BolognaGoogle Scholar
  101. Robinson BB (1941) Marihuana investigations. IV. A study of marihuana toxicity on goldfish applied to hemp breeding. J Am Pharm Assoc (Sci Edn) 30:616–619CrossRefGoogle Scholar
  102. Romocea JE, Grassi G (2010) In vivo culture of hemp culture for textile and pharmaceutical industry. In: Conference Proceedings, Innovative solutions for sustainable development of textiles industry. University of Oradea, RomaniaGoogle Scholar
  103. Roux F (1886) Etude sur la cannabine. Bulletin general de Thérapeutique Médicale et Chirugicale 111:492–514Google Scholar
  104. Ross SA, ElSohly HN, ElKashoury EA, ElSohly MA (1996) Fatty acids of cannabis seeds. Phytochem Anal 7:279–283CrossRefGoogle Scholar
  105. Russo EB (2011) Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163:1344–1364PubMedPubMedCentralCrossRefGoogle Scholar
  106. Savelli R (1932) Studien über den Ferrarischen Hanf. Der Züchter 4:286–290Google Scholar
  107. Schaedler C (1883) Die Technologie der Fette und Oele: Technologie der Fette und Oele des Pflanzen- und Thierreichs. Polytechnische Buchhandlung, BerlinGoogle Scholar
  108. Serebriakova-Zinserling TY (1928) Paнняя кoнoпли (Early hemp). Trudy po Prikladnoi Botanike, Genetike i Selektsii 18(1):407–410Google Scholar
  109. Sengbusch RV (1956) Le chanvre “Fibrimon” et “Fibridia.” In: Proceedings of the second international Flax and Hemp Congress, Courtrai, June 5–9 1956, pp 16-24. Berichte des Instituts für Bastfaserforschung, Wageningen, The NetherlandsGoogle Scholar
  110. Shelenga TV, Grigory’ev SV, Illarionova KV (2012) Биoxимичecкaя xapaктepиcтикa ceмян кoнoпли (Cannabis sativa L.) из paзличныx peгиoнoв Poccии [Biochemical characterization of hemp seed (Cannabis sativa L.) from different regions of Russia]. Tpyды пo пpиклaднoй бoтaникe, гeнeтикe и ceлeкции 170:212–219Google Scholar
  111. Sirikantaramas S, Taura F, Tanaka Y, Ishikawa Y, Morimoto S, Shoyama Y (2005) Tetrahydrocannabinolic acid synthase, the enzyme controlling marijuana psychoactivity, is secreted into the storage cavity of the glandular trichomes. Plant Cell Physiol 46:1578–1582PubMedCrossRefGoogle Scholar
  112. Small E, Beckstead HD (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia 36:144–165PubMedGoogle Scholar
  113. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25(4):405–435CrossRefGoogle Scholar
  114. Small E, Marcus D (2000) Hemp germplasm trials in Canada. Bioresource Hemp, 3rd International Symposium, Wolfsburg, Germany. Online proceedings: www.hemphasis.com/files/publications/biorpap.htm
  115. Small E, Jui P, Lefkovitch LP (1976) A numerical taxonomic analysis of Cannabis with special reference to species delimitation. Syst Bot 1:67–84CrossRefGoogle Scholar
  116. Snegireva A, Chernova T, Ageeva M, Lev-Yadun S, Gorshkova T (2015) Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants 7: plv061Google Scholar
  117. Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE (2012) The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J 71:353–365PubMedGoogle Scholar
  118. Taglialatela-Scafati O, Pagani A, Scala F, De Petrocellis L, Di Marzo V, Grassi G, Appendino G (2010) Cannabimovone, a cannabinoid with a rearranged terpenoid skeleton from hemp. Eur J Org Chem 11:2067–2072CrossRefGoogle Scholar
  119. Takashima D (1982) On the development of non-toxic hemp ‘White Tochigi’ (in Japanese). Tochigi Prefectural Agric Exp Stat Rep 28:47–54Google Scholar
  120. Taura F, Morimoto S, Shoyama Y, Mechoulam R (1995) First direct evidence for the mechanism of Δ1-tetrahydrocannabinolic acid biosynthesis. J Am Chem Soc 117:9766–9767CrossRefGoogle Scholar
  121. Taura F, Morimoto S, Shoyama Y (1996) Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid. J Biol Chem 271:17411–17416PubMedCrossRefGoogle Scholar
  122. Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa L. FEBS Lett 581:2929–2934PubMedCrossRefGoogle Scholar
  123. Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583(12):2061–2066PubMedCrossRefGoogle Scholar
  124. Theimer RR, Mölleken H (1995) “Analysis of the oil from different hemp (Cannabis sativa L.) cultivars—perspectives for economical utilization,” pages 536–543 in Bioresource Hemp, Proceedings of the Symposium, Frankfurt, Germany. nova-Institute, Köln, GermanyGoogle Scholar
  125. Thichak S, Natakankitkul S, Chansakaow S, Chutipongvivate S (2011) Identification of drug-type and fiber-type of hemp (Cannabis sativa L.) by multiplex PCR. Chiang Mai J Sci 38(4):608–618Google Scholar
  126. Tubaro A, Giangaspero A, Sosa S, Negri R, Grassi G, Casano S, Della Loggia R, Appendino G (2010) Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia 81:816–819PubMedCrossRefGoogle Scholar
  127. Turner CE, Elsohly MA, Cheng PC, Lewis G (1979) Constituents of Cannabis sativa L.; XIV: intrinsic problems in classifying Cannabis based on a single cannabinoid analysis. J Nat Prod 42:317–319CrossRefGoogle Scholar
  128. Valente L (1880) Sull’essenza di canapa. Gazzetta Chimica Italiana 10:479–481Google Scholar
  129. Valente L (1881) Studi sull’essenza di canapa. Atti della Reale Accademia dei Lincei (Series 3) 5: 126–128 (reprinted as “Sull’idrocarburo estratto dalla canapa”. Gazzetta Chimica Italiana 11(1881):196-198)Google Scholar
  130. Valieri R (1887) Sulla canapa nostrana e suoi preparati in sostituzione della Cannabis indica. Stabilimento tipografico dell’unione, NaplesGoogle Scholar
  131. Van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa L. Genome Biol 12(10):R102PubMedPubMedCentralCrossRefGoogle Scholar
  132. Virovets VG (1998) Interview. J Int Hemp Assoc 5:32–34Google Scholar
  133. Watson DP (1985) Cultivator’s choice catalog #4. Self-published, Amsterdam, HollandGoogle Scholar
  134. Weiblen GD, Wenger JP, Craft KJ, ElSohly MA, Mehmedic Z, Treiber EL, Marks MD (2015) Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol 208:1241–1250PubMedCrossRefGoogle Scholar
  135. Werz O, Seegers J, Schaible AM, Weinigel C, Barz D, Koeberle A, Allegrone G, Pollastro F, Zampieri L, Grassi G, Appendino G (2014) Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. Pharma Nutrition 2:53–60CrossRefGoogle Scholar
  136. Wherrell O (1897) Hemp-seed and hemp-seed oil. Bull Pharm 11:340–342Google Scholar
  137. Windsor HH (ed) (1938) New billion-dollar crop. Popular Mech Mag 69(2):238–239, 144AGoogle Scholar
  138. Yotoriyama M, Ito I, Takashima D, Shoyama Y, Nishioka I (1980) Plant breeding of Cannabis. Determination of cannabinoids by high-pressure liquid chromatography. Yakugaku Zasshi 100:611–614PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per le Colture IndustrialiCREA-CIRovigoItaly
  2. 2.GW Pharmaceuticals PlcLondonUK

Personalised recommendations