Skip to main content

Classical and Molecular Cytogenetics of Cannabis Sativa L.

  • 6073 Accesses

Abstract

Hemp (2n = 20) is an economically important crop and good model species for plant sex studying. It has the XX/XY system of sex chromosomes in which Y is longer then X. Cytogenetic studies of hemp were evidently started in the early 20th century and are continuing today. The most modern karyotype of hemp is described by formula 8 m + 1sm (SAT) + Xm/Ym for male and 8 m + 1sm (SAT) + Xm for female plants. The number of widely used cytogenetic markers (for example 5S rDNA and 45S rDNA) and species specific probes were mapped to mitotic and meiotic hemp chromosomes. The history of formation of knowledge about hemp karyotype and modern results of cytogenetic studies are discoursed in detail in this chapter.

Keywords

  • Pachytene Chromosome
  • Cannabis Sativa
  • Submetacentric Chromosome
  • Cytogenetic Marker
  • Unequal Pair

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-54564-6_18
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-54564-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 18.1
Fig. 18.2
Fig. 18.3
Fig. 18.4

References

  • Breslavets L (1926) Polyploide mitosen bei Cannabis sativa L. Ber Deutsch Bot Ges 44:498–502

    Google Scholar 

  • Breslavets L (1932) Polyploide Mitosen bei Cannabis sativa L. II. Planta 17(3):644–649

    CrossRef  Google Scholar 

  • De Jong JH, Fransz P, Zabel P (1999) High resolution FISH in plants–techniques and applications. Trends Plant Sci 4(7):258–263

    CrossRef  Google Scholar 

  • Dierks W, von Sengbusch R (1967) Studium der Vererbung des Geschlechts und des Wuchstyps beim Hanf. Der Züchter 37(1):12–15

    Google Scholar 

  • Divashuk MG, Alexandrov OS, Razumova OV, Kirov IV, Karlov GI (2014) Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system. PLoS ONE 9(1):e85118

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Briefings in Functional Genomics, elp058

    Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J 66(1):18–33

    CAS  CrossRef  PubMed  Google Scholar 

  • Hirata K (1927) Sex determination in hemp (Cannabis sativa L.). J Genet 19(1):65–79

    CrossRef  Google Scholar 

  • Hoffmann W (1938) Das Geschlechtsproblem des Hanfes in der Ziichtung. Zeitschr. Zticht. Reihe A. Pflanzenzticht. 22:453–468    

    Google Scholar 

  • Hoffmann W (1952) Die vererbung der geschlechtsformen des hanfes (Canabis sativa L.) Der Züchter 22(4−5):147–158

    Google Scholar 

  • Iovene M, Cavagnaro PF, Senalik D, Buell CR, Jiang J, Simon PW (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Res 19(4):493–506

    CAS  CrossRef  PubMed  Google Scholar 

  • Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L (2014) Anchoring linkage groups of the Rosa genetic map to physical chromosomes with Tyramide-FISH and EST-SNP markers. PLoS ONE 9(4):e95793

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kirov IV, Van Laere K, Khrustaleva LI (2015) High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa. BMC Genet 16(1):1

    CAS  CrossRef  Google Scholar 

  • Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P (2010) Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82:81–96

    Google Scholar 

  • Lindsay RH (1930) The chromosomes of some dioecious angiosperms. Am J Bot: 152–174

    Google Scholar 

  • Lindstrom EW (1939) Abstracts of papers presented at the 1938 meetings of the Genetics Society of America. Genetics, 24(1):65–111 (p 88)

    Google Scholar 

  • Mackay EL (1939) Sex chromosomes of Cannabis sativa. Am J Bot: 707–708

    Google Scholar 

  • McPhee HC (1924) Meiotic cytokinesis of Cannabis. Bot Gaz: 335–341

    Google Scholar 

  • Menzel MY (1964) Meiotic chromosomes of monoecious Kentucky hemp (Cannabis sativa). Bull Torrey Bot Club: 193–205

    Google Scholar 

  • Nishiyama I (1940) Studies on artificially produced polyploid plants. III. Meiosis in tetraploid hemp. Bot Zool 8:47–52

    Google Scholar 

  • Razumova OV, Alexandrov OS, Divashuk MG, Sukhorada TI, Karlov GI (2016) Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution. Protoplasma 253(3):895–901

    Google Scholar 

  • Riedel M (2005) In situ Hybridisierung an Hanf (Cannabis sativa L.) Chromosomen (Doctoral dissertation)

    Google Scholar 

  • Sakamoto K, Akiyama Y, Fukui K, Kamada H, Satoh S (1998) Characterization; genome sizes and morphology of sex chromosomes in hemp (Cannabis sativa L.). Cytologia 63:459–464. doi:10.1508/cytologia.63.459

    CrossRef  Google Scholar 

  • Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S (2000) Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44(6):723–732

    CAS  CrossRef  PubMed  Google Scholar 

  • Sakamoto K, Abe T, Matsuyama T, Yoshida S, Ohmido N, Fukui K, Satoh S (2005) RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa L. Genome 48(5):931–936

    Google Scholar 

  • Schaffner JH (1919) Complete reversal of sex in hemp. Science: 311–312

    Google Scholar 

  • Schaffner JH (1921) Influence of environment on sexual expression in hemp. Bot Gaz: 197–219

    Google Scholar 

  • Schaffner JH (1923) The time of sex determination in plants. Ohio J Sci v23 n5 (September–October 1923), 225–240

    Google Scholar 

  • Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46:973–986

    CAS  CrossRef  Google Scholar 

  • Sinotô Y (1928) On the chromosome number and the unequal pair of chromosomes in some dioecious plants. Proc Imperial Acad 4(4):175–177

    Google Scholar 

  • Srivastava P, Srivastava S, Verma MK, Mishra SK (1999) Karyological Studies in Root-Tip Cells of Cannabis sativa var. indica. Cytologia 64(4):435–440

    CrossRef  Google Scholar 

  • Struik PC, Amaducci S, Bullard MJ, Stutterheim NC, Venturi G, Cromack HTH (2000) Agronomy of fibre hemp (Cannabis sativa L.) in Europe. Ind Crop Prod 11:107–118

    CrossRef  Google Scholar 

  • Truta E, Olteanu N, Surdu S, Zamfirache MM, Oprica L (2007) Some aspects of sex determinism in hemp. Analele Stiintificeale Universitatii ‘‘Alexandru Ioan Cuza’’, Sectiunea Genetica si Biologie Moleculara VIII:31–39

    Google Scholar 

  • Van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, Page JE (2011) The draft genome and transcriptome of Cannabis sativa. Genome Biol 12:R102. doi:10.1186/gb-2011-12-10-r102

    Google Scholar 

  • van der Werf HMG, Mathijssen EWJM, Haverkort AJ (1996) The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Ann Appl Biol 129:109–123

    CrossRef  Google Scholar 

  • Warmke HE, Blakeslee AF (1939) Carnegie Institution of Washington, Department of Genetics, Cold Spring Harbor, N.Y. Effect of polyploidy upon the sex mechanism in dioecious plants

    Google Scholar 

  • Warmke HE, Davidson H (1944) Polyploidy investigations. Polyploid investigation. Yearb. Carnegie Institution of Washington, 43:135–139

    Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Advances in Genetics 9:217–281

    Google Scholar 

  • Yamada I (1943) The sex chromosome of Cannabis sativa L. Seiken Ziho. 2:64–68

    Google Scholar 

  • Zhang W, Wai CM, Ming R, Yu Q, Jiang J (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3(3):166–170

    CrossRef  Google Scholar 

  • Zhong XB, de Jong JH, Zabel P (1996) Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res 4(1):24–28

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project # 15-04-06244a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady I. Karlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Karlov, G.I., Razumova, O.V., Alexandrov, O.S., Divashuk, M.G., Kroupin, P.Y. (2017). Classical and Molecular Cytogenetics of Cannabis Sativa L.. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_18

Download citation