Skip to main content

Cannabidiol as a Treatment for Seizures, Convulsions and Epilepsy

Abstract

The pharmacological and medicinal properties of Cannabis sativa in the production of euphoria and the treatment of pain, nausea, anorexia, glaucoma, muscle spasticity, seizures, convulsions, epilepsy and many other indications have been the subject of considerable interest for thousands of year. While Δ9-THC is the chemical constituent in cannabis most commonly associated with these actions, other phytocannabinoids have also been shown to possess significant pharmacological activity and therapeutic potential. Cannabidiol (CBD) is one such compound that produces a variety of pharmacological effects of potential clinical importance, while at the same time being practically devoid of the psychoactivity and abuse liability associated with Δ9-THC. Despite its lack of psychoactivity, CBD and CBD-containing cannabis extracts are controlled as Schedule 1 substances by the United States Drug Enforcement Administration. However, the accumulating evidence showing that CBD formulations can provide therapeutic benefit in treating debilitating diseases has prompted actions by both the Drug Enforcement Administration and the Food and Drug Administration to facilitate continued preclinical and clinical research. Some of the most promising clinical applications for CBD-based therapeutics are in neuronal hyperexcitability, seizures, convulsions and epilepsy. An increasing amount of preclinical and clinical evidence supports the use of CBD for these indications; however, the safety and efficacy of CBD dose formulations in infants, adolescents and other patient populations remain to be firmly established. In addition, the mechanisms of action responsible for CBD’s clinical effects remain to be fully elucidated, it inhibits cytochrome P450s and it has drug interaction liabilities. There is also speculation that extracts of cannabis produce a synergistic entourage effect that improves efficacy over CBD alone. Thus, there remains a clear need for further studies of the structure-activity relationships and mechanisms of action of CBD-based formulations to ensure that the therapeutic indices of dosage formulations are clearly understood and optimized for patient populations.

Keywords

  • Transient Receptor Potential
  • Tuberous Sclerosis Complex
  • Fatty Acid Amide Hydrolase
  • Dravet Syndrome
  • Drug Enforcement Administration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-54564-6_11
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-54564-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 11.1

References

  • Adams R, Pease DC, Cain CK, Clark JH (1940) Structure of Cannabidiol. VI. Isomerization of cannabidiol to tetrahydrocannabinol, a physiologically active product. Conversion of cannabidiol to cannabinol. J Am Chem Soc 62:2402–2405

    CAS  CrossRef  Google Scholar 

  • Alger BE (2004) Endocannabinoids and their implications for epilepsy. Epilepsy Currents 4:169–173

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ames FR, Cridland S (1986) Anticonvulsant effect of cannabidiol. S Afr Med J Suid-Afrikaanse tydskrif vir geneeskunde 69:14

    CAS  PubMed  Google Scholar 

  • Baek SH, Srebnik M, Mechoulam R (1985) Boron triflouride etherate on alimina—a modified Lewis acid reagent. An improved synthesis of cannabidiol. Tetrahedron Lett 26:1083–1086

    CAS  CrossRef  Google Scholar 

  • Beique JC, Campbell B, Perring P, Hamblin MW, Walker P, Mladenovic L, Andrade R (2004) Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 24:4807–4817

    CAS  CrossRef  PubMed  Google Scholar 

  • Bergamaschi MM, Queiroz RH, Zuardi AW, Crippa JA (2011) Safety and side effects of cannabidiol, a Cannabis sativa constituent. Current Drug Safe 6:237–249

    CAS  CrossRef  Google Scholar 

  • Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001a) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bisogno T, Hanuš L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001b) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Carlini EA, Leite JR, Tannhauser M, Berardi AC (1973) Letter: Cannabidiol and Cannabis sativa extract protect mice and rats against convulsive agents. J Pharm Pharmacol 25:664–665

    CAS  CrossRef  PubMed  Google Scholar 

  • Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci USA 103:7895–7900

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Consroe P, Wolkin A (1977) Cannabidiol–antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. J Pharmacol Exp Ther 201:26–32

    CAS  PubMed  Google Scholar 

  • Consroe P, Benedito MA, Leite JR, Carlini EA, Mechoulam R (1982) Effects of cannabidiol on behavioral seizures caused by convulsant drugs or current in mice. Eur J Pharmacol 83:293–298

    CAS  CrossRef  PubMed  Google Scholar 

  • Consroe P, Kennedy K, Schram K (1991) Assay of plasma cannabidiol by capillary gas chromatography/ion trap mass spectroscopy following high-dose repeated daily oral administration in humans. Pharmacol Biochem Behav 40:517–522

    CAS  CrossRef  PubMed  Google Scholar 

  • Cunha JM, Carlini EA, Pereira AE, Ramos OL, Pimentel C, Gagliardi R, Sanvito WL, Lander N, Mechoulam R (1980) Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21:175–185

    CAS  CrossRef  PubMed  Google Scholar 

  • De Petrocellis L, Ligresti A, Moriello AS, Allara M, Bisogno T, Petrosino S, Stott CG, Di Marzo V (2011) Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br J Pharmacol 163:1479–1494

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, Di Marzo V, Jutras-Aswad D, Notcutt WG, Martinez-Orgado J, Robson PJ, Rohrback BG, Thiele E, Whalley B, Friedman D (2014) Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 55:791–802

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, Miller I, Flamini R, Wilfong A, Filloux F, Wong M, Tilton N, Bruno P, Bluvstein J, Hedlund J, Kamens R, Maclean J, Nangia S, Singhal NS, Wilson CA, Patel A, Cilio MR (2016) Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 15:270–278

    CAS  CrossRef  PubMed  Google Scholar 

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624

    CAS  CrossRef  PubMed  Google Scholar 

  • Fasinu PS, Phillips S, ElSohly MA, Walker LA (2016) Current status and prospects for cannabidiol preparations as new therapeutic agents. Pharmacotherapy 36:781–796

    CrossRef  PubMed  Google Scholar 

  • Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, Martínez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75:323–333

    CrossRef  PubMed  Google Scholar 

  • Gallily R, Yekhtin Z, Hanuš L (2015) Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. Pharmacol Pharm 6:75–85

    CAS  CrossRef  Google Scholar 

  • Gaoni Y, Mechoulam R (1968) The ISO-tetrahydrocannabinols. Isr J Chem 6:679–690

    CAS  CrossRef  Google Scholar 

  • Gofshteyn JS, Wilfong A, Devinsky O, Bluvstein J, Charuta J, Ciliberto MA, Laux L, Marsh ED (2016) Cannabidiol as a potential treatment for febrile infection-related epilepsy syndrome (FIRES) in the acute and chronic phases. J child Neurol [Epub ahead of print]

    Google Scholar 

  • Guy GW, Robson PJ (2003) A phase I, double blind, three-way crossover study to assess the pharmacokinetic profile of cannabis based medicine extract (CBME) administered sublingually in variant cannabinoid ratios in normal healthy male volunteers (GWPK0215). J Cannabis Ther 3:121–152

    CAS  CrossRef  Google Scholar 

  • Hanus LO, Tchilibon S, Ponde DE, Breuer A, Fride E, Mechoulam R (2005) Enantiomeric cannabidiol derivatives: synthesis and binding to cannabinoid receptors. Org Biomol Chem 3:1116–1123

    CAS  CrossRef  PubMed  Google Scholar 

  • Harvey DJ, Mechoulam R (1990) Metabolites of cannabidiol identified in human urine. Xenobiotica (the fate of foreign compounds in biological systems) 20:303–320

    CAS  CrossRef  Google Scholar 

  • Hawksworth GM, McArdle K (2004) Metabolism and pharmacokinetics of cannabinoids. In: Guy G, Whittle B, Robson P (eds)The Medicinal Uses of Cannabis and Cannabinoids. Pharmaceutical Press, London, pp 205–228

    Google Scholar 

  • Hess EJ, Moody KA, Geffrey AL, Pollack SF, Skirvin LA, Bruno PL, Paolini JL, Thiele EA (2016) Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex. Epilepsia 57:1617–1624

    CAS  CrossRef  PubMed  Google Scholar 

  • Hill AJ, Jones NA, Smith I, Hill CL, Williams CM, Stephens GJ, Whalley BJ (2014) Voltage-gated sodium (NaV) channel blockade by plant cannabinoids does not confer anticonvulsant effects per se. Neurosci Lett 566:269–274

    CAS  CrossRef  PubMed  Google Scholar 

  • Iannotti FA, Hill CL, Leo A, Alhusaini A, Soubrane C, Mazzarella E, Russo E, Whalley BJ, Di Marzo V, Stephens GJ (2014) Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize transient receptor potential vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 5:1131–1141

    CAS  CrossRef  PubMed  Google Scholar 

  • Izquierdo I, Orsingher OA, Berardi AC (1973) Effect of cannabidiol and of other Cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia 28:95–102

    CAS  CrossRef  PubMed  Google Scholar 

  • Jones PG, Falvello L, Kennard O, Sheldrick GM, Mechoulam R (1977) Cannabidiol. Acta Crystallogr Sect B 33:3211–3214

    CrossRef  Google Scholar 

  • Jones NA, Hill AJ, Smith I, Bevan SA, Williams CM, Whalley BJ, Stephens GJ (2010) Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo. J Pharmacol Exp Ther 332:569–577

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Jones NA, Glyn SE, Akiyama S, Hill TDM, Hill AJ, Weston SE, Burnett MDA, Yamasaki Y, Stephens GJ, Whalley BJ, Williams CM (2012) Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures. Seizure 21:344–352

    CrossRef  PubMed  Google Scholar 

  • Laprairie RB, Bagher AM, Kelly ME, Dupre DJ, Denovan-Wright EM (2014) Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons. J Biol Chem 289:24845–24862

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ledgerwood CJ, Greenwood SM, Brett RR, Pratt JA, Bushell TJ (2011) Cannabidiol inhibits synaptic transmission in rat hippocampal cultures and slices via multiple receptor pathways. Br J Pharmacol 162:286–294

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkotter J, Hellmich M, Koethe D (2012) Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry 2:e94

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Martin-Moreno AM, Reigada D, Ramirez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer’s disease. Mol Pharmacol 79:964–973

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and Delta(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 172:737–753

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Mechoulam R, Carlini EA (1978) Toward drugs derived from cannabis. Die Naturwissenschaften 65:174–179

    CAS  CrossRef  PubMed  Google Scholar 

  • Mechoulam R, Hanus L (2002) Cannabidiol: an overview of some chemical and pharmacological aspects. Part I: chemical aspects. Chem Phys Lipids 121:35–43

    CAS  CrossRef  PubMed  Google Scholar 

  • Ohlsson A, Lindgren JE, Andersson S, Agurell S, Gillespie H, Hollister LE (1984) Single dose kinetics of cannabidiol in man. In: Agurell S, Dewey WL and Willette RE (eds) The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects. Academic Press, pp 219–225

    Google Scholar 

  • Ottersen T, Rosenqvist E, Turner CE (1977) The crystal and molecular structure of cannabidiol. Acta Chem Scand B31:807–812

    CrossRef  Google Scholar 

  • Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR (2016) Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 139:2164–2181

    CrossRef  PubMed  Google Scholar 

  • Perez-Reyes M, Wingfield M (1974) CAnnabidiol and electroencephalographic epileptic activity. JAMA 230:1635

    CAS  CrossRef  PubMed  Google Scholar 

  • Pertwee RG, Ross RA, Craib SJ, Thomas A (2002) (-)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. Eur J Pharmacol 456:99–106

    CAS  CrossRef  PubMed  Google Scholar 

  • Petitet F, Jeantaud B, Reibaud M, Imperato A, Dubroeucq MC (1998) Complex pharmacology of natural cannabinoids: evidence for partial agonist activity of delta9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors. Life Sci 63:Pl1–6

    Google Scholar 

  • Petrzilka T, Haefliger W, Sikemeier C, Ohloff G, Eschenmoser A (1967) Synthese und Chiralität des (-)-Cannabidiols Vorläufige Mitteilung. Helv Chim Acta 50:719–723

    CAS  CrossRef  PubMed  Google Scholar 

  • Reggio PH, Panu AM, Miles S (1993) Characterization of a region of steric interference at the cannabinoid receptor using the active analog approach. J Med Chem 36:1761–1771

    CAS  CrossRef  PubMed  Google Scholar 

  • GW Pharmaceuticals Press Release (2016a) GW pharmaceuticals announces positive phase 3 pivotal study results for epidiolex® (cannabidiol), http://www.gwpharm.com/GW%20Pharmaceuticals%20Announces%20Positive%20Phase%203%20Pivotal%20Study%20Results%20for%20Epidiolex%20cannabidiol.aspx

  • GW Pharmaceuticals Press Release (2016b) GW pharmaceuticals announces positive phase 3 pivotal trial results for epidiolex® (cannabidiol) in the treatment of lennox-gastaut syndrome, http://www.gwpharm.com/GW%20Pharmaceuticals%20Announces%20Positive%20Phase%203%20Pivotal%20Trial%20Results%20for%20Epidiolex%20cannabidiol%20in%20the%20Treatment%20of%20Lennox-Gastaut%20Syndrome.aspx

  • GW Pharmaceuticals Press Release (2016c) GW pharmaceuticals announces second positive phase 3 pivotal trial for epidiolex (cannabidiol) in the treatment of lennox-gastaut syndrome, http://www.gwpharm.com/PR260916.aspx

  • Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM, Akamine AT, Almeida VI, Quevedo J, Dal-Pizzol F, Hallak JE, Zuardi AW, Crippa JA, Palermo-Neto J (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor. Eur J Pharmacol 678:78–85

    CAS  CrossRef  PubMed  Google Scholar 

  • Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular ca 2 + levels. J Neurosci 29:2053–2063

    CAS  CrossRef  PubMed  Google Scholar 

  • Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Shirazi-zand Z, Ahmad-Molaei L, Motamedi F, Naderi N (2013) The role of potassium BK channels in anticonvulsant effect of cannabidiol in pentylenetetrazole and maximal electroshock models of seizure in mice. Epilepsy Behav 28:1–7

    CrossRef  PubMed  Google Scholar 

  • Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO (2015) The role of the serotonin receptor subtypes 5-HT(1A) and 5-HT(7) and its interaction in emotional learning and memory. Frontiers Pharmacol 6:162

    CrossRef  Google Scholar 

  • Sylantyev S, Jensen TP, Ross RA, Rusakov DA (2013) Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proc Natl Acad Sci USA 110:5193–5198

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934

    CAS  CrossRef  PubMed  Google Scholar 

  • Thomas BF, Compton DR, Martin BR, Semus SF (1991) Modeling the cannabinoid receptor: a three-dimensional quantitative structure-activity analysis. Mol Pharmacol 40:656–665

    CAS  PubMed  Google Scholar 

  • Thomas BF, Gilliam AF, Burch DF, Roche MJ, Seltzman HH (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285:285–292

    CAS  PubMed  Google Scholar 

  • Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG (2007) Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br J Pharmacol 150:613–623

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Turner JC, Hemphill JK, Mahlberg PG (1981) Interrelationships of glandular trichomes and cannabinoid content. I. Developing pistillate bracts of Cannabis sativa L. (Cannabaceae). Bull Narc 33:59–69

    CAS  PubMed  Google Scholar 

  • U.S. Drug Enforcement Administration (2015) DEA Eases Requirements for FDA-Approved Clinical Trials on Cannabidiol. Headquarter News

    Google Scholar 

  • Vaughan CW, Christie MJ (2005) Retrograde signalling by endocannabinoids. Handbook of Experimental Pharmacology, pp 367–383

    Google Scholar 

  • Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7:31–40

    CAS  CrossRef  PubMed  Google Scholar 

  • Wallace MJ, Wiley JL, Martin BR, DeLorenzo RJ (2001) Assessment of the role of CB1 receptors in cannabinoid anticonvulsant effects. Eur J Pharmacol 428:51–57

    CAS  CrossRef  PubMed  Google Scholar 

  • Watanabe K, Ogi H, Nakamura S, Kayano Y, Matsunaga T, Yoshimura H, Yamamoto I (1998) Distribution and characterization of anandamide amidohydrolase in mouse brain and liver. Life Sci 62:1223–1229

    CAS  CrossRef  PubMed  Google Scholar 

  • Watanabe K, Itokawa Y, Yamaori S, Funahashi T, Kimura T, Kaji T, Usami N, Yamamoto I (2007) Conversion of cannabidiol to Δ9-tetrahydrocannabinol and related cannabinoids in artificial gastric juice, and their pharmacological effects in mice. Forensic Toxicol 25:16–21

    CAS  CrossRef  Google Scholar 

  • Wiley JL, Beletskaya ID, Ng EW, Dai Z, Crocker PJ, Mahadevan A, Razdan RK, Martin BR (2002) Resorcinol derivatives: a novel template for the development of cannabinoid CB1/CB2 and CB2-selective agonists. J Pharmacol Exp Ther 301:679–689

    CAS  CrossRef  PubMed  Google Scholar 

  • Zendulka O, Dovrtělová G, Nosková K, Turjap M, Šulcová A, Hanuš L, Juřica J (2016) Cannabinoids and cytochrome P450 interactions. Curr Drug Metab 17:206–226

    CAS  CrossRef  PubMed  Google Scholar 

  • Zhang Y, Lipton P (1999) Cytosolic Ca2 + changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na + -dependent Ca2 + release from mitochondria. J Neurosci 19:3307–3315

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from the National Institute on Drug Abuse (R01DA-040460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Thomas, B.F. (2017). Cannabidiol as a Treatment for Seizures, Convulsions and Epilepsy. In: Chandra, S., Lata, H., ElSohly, M. (eds) Cannabis sativa L. - Botany and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-54564-6_11

Download citation