Advertisement

Signatures of Universal Characteristics of Fractal Fluctuations in Global Mean Monthly Temperature Anomalies

  • Amujuri Mary SelvamEmail author
Chapter
  • 380 Downloads
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Self-similar space-time fractal fluctuations are generic to dynamical systems in nature such as atmospheric flows, heartbeat patterns, population dynamics, etc. The physics of the long-range correlations intrinsic to fractal fluctuations is not completely understood. It is important to quantify the physics underlying the irregular fractal fluctuations for prediction of space-time evolution of dynamical systems. A general systems theory model for fractals visualising the emergence of successively larger-scale fluctuations resulting from the space-time integration of enclosed smaller scale fluctuations predicts the following. (i) The probability distribution and the power spectrum for fractal fluctuations is the same inverse power-law function incorporating the golden mean. (ii) The predicted distribution is close to the Gaussian distribution for small-scale fluctuations but exhibits fat long tail for large-scale fluctuations with higher probability of occurrence than predicted by Gaussian distribution. (iii) Since the power spectrum (variance, i.e. square of eddy amplitude) also represents the probability densities as in the case of quantum systems such as the electron or photon, fractal fluctuations exhibit quantum-like chaos. (iv) The fine-structure constant for spectrum of fractal fluctuations is a function of the golden mean and is analogous to atomic spectra equal to about 1/137. Global gridded time series data sets of monthly mean temperatures for the period 1880—2007/2008 were analysed. The data sets and the corresponding power spectra exhibit distributions close to the model predicted inverse power-law distribution. The model predicted and observed universal spectrum for interannual variability rules out linear secular trends in global monthly mean temperatures. Global warming results in intensification of fluctuations of all scales and manifested immediately in high frequency fluctuations.

Keywords

Fractals and statistical normal distribution Power-law distributions Long-range correlations and fat tail distributions Golden mean and fractal fluctuations 

References

  1. Bak, P.C., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)CrossRefGoogle Scholar
  2. Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Sci. 1, 4–27 (1980)Google Scholar
  3. Ford, K.W.: Basic Physics. Blaisdell Publishing Company, Waltham, Massachusetts, USA (1968)Google Scholar
  4. Grossing, G.: Quantum systems as order out of chaos phenomena. Il Nuovo Cimento 103B, 497–510 (1989)CrossRefGoogle Scholar
  5. Jenkinson, A. F.: A powerful elementary method of spectral analysis for use with monthly, seasonal or annual meteorological time series. Meteorological Office, Branch Memorandum No. 57, London (1977)Google Scholar
  6. Maddox, J.: Licence to slang Copenhagen? Nature 332, 581 (1988)CrossRefGoogle Scholar
  7. Maddox, J.: Can quantum theory be understood? Nature 361, 493 (1993)CrossRefGoogle Scholar
  8. Mandelbrot, B.B.: Les Objets Fractals: Forme. Hasard et Dimension, Flammarion, Paris (1975)Google Scholar
  9. Peterson, T.C., Vose, R.S.: An overview of the global historical climatology network temperature database. Bull. Am. Meteorol. Soc. 78, 2837–2849 (1997)CrossRefGoogle Scholar
  10. Peterson, T.C., Vose, R.S., Schmoyer, R., Razuvae, V.: Global Historical Climatology Network (GHCN) quality control of monthly temperature data. Int. J. Climatol. 18, 1169–1179 (1998a)CrossRefGoogle Scholar
  11. Peterson, T.C., Karl, T.R., Jamason, P.F., Knight, R., Easterling, D.R.: The first difference method: maximizing station density for the calculation of long-term global temperature change. J. Geophys. Res. 103, 25967–25974 (1998b)CrossRefGoogle Scholar
  12. Phillips, T.: The mathematical uncertainty principle. Monthly essays on mathematical topics November 2005, American Mathematical Society (2005). http://www.ams.org/featurecolumn/archive/uncertainty.html
  13. Rae, A.: Quantum-Physics: illusion or reality?. Cambridge University Press, New York (1988)Google Scholar
  14. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical methods for physics and engineering, 3rd edn. Cambridge University Press, USA (2006)CrossRefGoogle Scholar
  15. Ruhla, C.: The physics of chance. Oxford University Press, Oxford (1992)Google Scholar
  16. Schroeder, M.: Fractals, chaos and power-laws. W. H. Freeman and Co., N.Y. (1991)Google Scholar
  17. Selvam, A.M.: Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows. Can. J. Phys. 68, 831–841 (1990). http://xxx.lanl.gov/html/physics/0010046
  18. Selvam, A.M., Fadnavis, S.: Signatures of a universal spectrum for atmospheric inter-annual variability in some disparate climatic regimes. Meteorology and Atmospheric Physics 66, 87–112. http://xxx.lanl.gov/abs/chao-dyn/9805028
  19. Selvam, A.M., Fadnavis, S.: Superstrings, cantorian-fractal spacetime and quantum-like chaos in atmospheric flows. Chaos Solitons Fractals 10, 1321–1334 (1999). http://xxx.lanl.gov/abs/chao-dyn/9806002
  20. Selvam, A.M., Sen, D., Mody, S.M.S.: Critical fluctuations in daily incidence of acute myocardial infarction. Chaos Solitons Fractals 11, 1175–1182 (2000). http://xxx.lanl.gov/abs/chao-dyn/9810017
  21. Selvam, A.M.: Quantum-like chaos in prime number distribution and in turbulent fluid flows. Apeiron 8, 29–64 (2001a). http://redshift.vif.com/JournalFiles/V08NO3PDF/V08N3SEL.PDF; http://xxx.lanl.gov/html/physics/0005067
  22. Selvam, A.M.: Signatures of quantum-like chaos in spacing intervals of non-trivial Riemann zeta zeros and in turbulent fluid flows. Apeiron 8, 10–40 (2001b). http://redshift.vif.com/JournalFiles/V08NO4PDF/V08N4SEL.PDF http://xxx.lanl.gov/html/physics/0102028
  23. Selvam, A.M.: Cantorian fractal space-time fluctuations in turbulent fluid flows and the kinetic theory of gases. Apeiron 9, 1–20 (2002a). http://redshift.vif.com/JournalFiles/V09NO2PDF/V09N2sel.PDF; http://xxx.lanl.gov/html/physics/9912035
  24. Selvam, A.M.: Quantumlike chaos in the frequency distributions of the bases A, C, G, T in Drosophila DNA. Apeiron 9, 103–148 (2002b). http://redshift.vif.com/JournalFiles/V09NO4PDF/V09N4sel.pdf; http://arxiv.org/html/physics/0210068
  25. Selvam, A.M.: Quantumlike chaos in the frequency distributions of the bases A, C, G, T in human chromosome 1 DNA. Apeiron 11, 134–146 (2004). http://redshift.vif.com/JournalFiles/V11NO3PDF/V11N3SEL.PDF; http://arxiv.org/html/physics/0211066
  26. Selvam, A.M.: Chaotic climate dynamics. Luniver Press, UK (2007)Google Scholar
  27. Selvam, A.M.: Rain formation in warm clouds: general systems theory. Springer Briefs in Meteorology, Springer (2015)Google Scholar
  28. Spiegel, M.R.: Statistics. Schaum’s Outline Series in Mathematics, McGraw-Hill (1961)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ministry of Earth Sciences, Government of IndiaRetired from IITMPuneIndia

Personalised recommendations