Advertisement

Self-organized Criticality: A Signature of Quantum-like Chaos in Atmospheric Flows

  • Amujuri Mary SelvamEmail author
Chapter
  • 402 Downloads
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Atmospheric flows exhibit long-range spatiotemporal correlations manifested as the fractal geometry to the global cloud cover pattern concomitant with inverse power-law form for power spectra of temporal fluctuations on all space-time scales ranging from turbulence (centimetres-seconds) to climate (kilometres-years). Long-range spatiotemporal correlations are ubiquitous to dynamical systems in nature and are identified as signatures of self-organized criticality. Standard models in meteorological theory cannot explain satisfactorily the observed self-organized criticality in atmospheric flows. Mathematical models for simulation and prediction of atmospheric flows are nonlinear and do not possess analytical solutions. Finite precision computer realizations of nonlinear models give unrealistic solutions because of deterministic chaos, a direct consequence of round-off error growth in iterative numerical computations. Recent studies show that round-off error doubles on an average for each iteration of iterative computations. Round-off error propagates to the mainstream computation and gives unrealistic solutions in numerical weather prediction (NWP) and climate models, which incorporate thousands of iterative computations in long-term numerical integration schemes. A general systems theory model for atmospheric flows developed by the author predicts the observed self-organized criticality as intrinsic to quantumlike chaos in flow dynamics. The model provides universal quantification for self-organized criticality in terms of the golden ratio τ (≈1.618). Model predictions are in agreement with a majority of observed spectra of time series of several standard meteorological and climatological data sets representative of disparate climatic regimes. Universal spectrum for natural climate variability rules out linear trends. Man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high-frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. The cell dynamical system model for atmospheric flows is a general systems theory applicable in general to all dynamical systems in other fields of science, such as, number theory, biology, physics and botany.

Keywords

General systems theory Nonlinear dynamics and chaos Fractals Long-range space-time correlations Self-organized criticality Quantumlike chaos 

References

  1. Argyris, J., Ciubotariu, C.: On El Naschie’s complex time and gravitation. Chaos, Solitons Fractals 8, 743–751 (1997)CrossRefGoogle Scholar
  2. Aspect, A.: Viewpoint: closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (4 pages) (2015)Google Scholar
  3. Aspelmeyer, M., Zeilinger, A.: Feature: a quantum renaissance. Phys. World 22–28 (2008)Google Scholar
  4. Bak, P., Chen, K.: The physics of fractals. Physica D 38, 5–12 (1989)CrossRefGoogle Scholar
  5. Bak, P., Chen, K.: Self-organized criticality. Sci. Am. 264(1), 46–53 (1991)CrossRefGoogle Scholar
  6. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefGoogle Scholar
  7. Bak, P.C., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)CrossRefGoogle Scholar
  8. Berry, M.V.: The geometric phase. Sci. Amer. 259(6), 26–34 (1988)CrossRefGoogle Scholar
  9. Boeyens, J.C.A., Thackeray, J.F.: Number theory and the unity of science. S. Afr. J. Sci. 110(11/12), 5–6 (2014)CrossRefGoogle Scholar
  10. Brown, J.: Where two worlds meet. New Sci. 150(2030), 26–30 (1996)Google Scholar
  11. Buchanan, M.: One law to rule them all. New Sci. 156(2107), 30–35 (1997)Google Scholar
  12. Buchanan, M.: Fractal reality. New Sci. 201(2701), 37–39 (2009)CrossRefGoogle Scholar
  13. Buchanan, M.: Does not compute? Nat. Phys. 10(6), 404 (2014)CrossRefGoogle Scholar
  14. Bush, J.W.M.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292 (2015)CrossRefGoogle Scholar
  15. Chiao, R.Y., Kwiat, P.G., Steinberg, A.M.: Faster than light. Sci. Am. 269(2), 52–60 (1993)CrossRefGoogle Scholar
  16. Coldea, R., Tennant, D.A., Wheeler, E.M., Wawrzynska, E., Prabhakaran, D., Telling, M., Habicht, K., Smeibidl, P., Kiefer, K.: Quantum criticality in an ising chain: experimental evidence for emergent E8 symmetry. Science 327(5962), 177–180 (2010)CrossRefGoogle Scholar
  17. Craig, G.C., Mack, J.M.: A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos. 118, 8761–8769 (2013)CrossRefGoogle Scholar
  18. Delbourgo, R.: Universal facets of chaotic processes. Asia-Pacific Physics News 1, 7–11 (1986)Google Scholar
  19. Dessai, S., Walter, M.E.: Self-organized criticality and the atmospheric sciences: selected review, new findings and future directions (2000). http://www.esig.ucar.edu/extremes/papers/walter.PDF
  20. Ecke, R.E.: Chaos, patterns, coherent structures, and turbulence: reflections on nonlinear science. Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 097605(8 pages) (2015)Google Scholar
  21. El Naschie, M.S.: A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons Fractals 19, 209–236 (2004)CrossRefGoogle Scholar
  22. Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Sci. 1, 4–27 (1980)Google Scholar
  23. Ford, K.W.: Basic physics. Blaisdell Publishing Company, Waltham, Massachusetts, USA (1968)Google Scholar
  24. Giustina, M., Versteegh, M.A.M., Wengerowsky, S., et al.: 2015: Significant-loophole-free test of bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401(7 pages)Google Scholar
  25. Gleick, J.: Chaos: making a new science. Viking, New York (1987)Google Scholar
  26. Grossing, G.: Quantum systems as order out of chaos phenomena. Il Nuovo Cimento 103B, 497–510 (1989)CrossRefGoogle Scholar
  27. Hensen, B., Bernien, H., Dréau, A.E., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometers. Nature 526, 682–686 (2015)Google Scholar
  28. Heyrovska, R.: Golden ratio based fine structure constant and rydberg constant for hydrogen spectra. Int. J. Sci. 2, 28–31 (2013)Google Scholar
  29. Heyrovska, R., Narayan, S.: Fine-structure constant, anomalous magnetic moment, relativity factor and the golden ratio that divides the Bohr radius (2005) http://arxiv.org/ftp/physics/papers/0509/0509207.pdfGoogle Scholar
  30. Heyrovska, R.: The golden ratio in the creations of nature arises in the architecture of atoms and ions. In: Şener, B. (ed.) Innovations in Chemical Biology, pp. 133–139. Springer (2009)Google Scholar
  31. Iovane, G., Chinnici, M., Tortoriello, F.S.: Multifractals and El Naschie E-infinity Cantorian space–time. Chaos, Solitons Fractals 35(4), 645–658 (2008)CrossRefGoogle Scholar
  32. Itzhak, B., Rychkov, D.: Background independent string field theory (2014) arXiv:1407.4699v2
  33. Jean, R.V.: Phyllotaxis: A Systemic Study in Plant Morphogenesis. Cambridge University Press, New York (1994)CrossRefGoogle Scholar
  34. Kaku, M.: Into the eleventh dimension. New Sci. 153(2065), 32–36 (1997)Google Scholar
  35. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301–305 (1941)Google Scholar
  36. Konar, S.: A divine surprise: the golden mean and the round-off error. Resonance 11(4), 91–99 (2006)CrossRefGoogle Scholar
  37. Li, M., Zhao, W.: Golden ratio phenomenon of random data obeying von Karman spectrum. Math. Probl. Eng. 2013, 1–6 (2013a). doi: 10.1155/2013/130258 Google Scholar
  38. Li, M., Zhao, W.: Essay on Kolmogorov law of minus 5 over 3 viewed with golden ratio. Adv. High Energy Phys. 2013, 1–3 (2013b). doi: 10.1155/2013/680678 Google Scholar
  39. Linage, G., Montoya, F., Sarmiento, A., Showalter, K., Parmananda, P.: Fibonacci order in the period-doubling cascade to chaos. Phys. Lett. A 359, 638–639 (2006)CrossRefGoogle Scholar
  40. Lindner, J.F., Kohar, V., Kia, B., Hippke, M., Learned, J.G., Ditto, W.L.: Strange nonchaotic stars. Phys. Rev. Lett. 114, 054101 (2015)CrossRefGoogle Scholar
  41. Liu, Z., Alexander, M.: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Rev. Geophys. 45, RG2005 (2007). doi: 10.1029/2005RG000172
  42. Lovejoy, S., Schertzer, D.: Scale invariance, symmetries, fractal and stochastic simulations of atmospheric phenomena. Bull. Am. Meteorol. Soc. 67, 21–32 (1986a)CrossRefGoogle Scholar
  43. Lovejoy, S., Schertzer, D.: Scale in variance in climatological temperatures and the local spectral plateau. Annates Geophysicae 86B, 401–409 (1986b)Google Scholar
  44. Maddox, J.: Licence to slang Copenhagen? Nature 332, 581 (1988)CrossRefGoogle Scholar
  45. Maddox, J.: Can quantum theory be understood? Nature 361(6412), 493 (1993)CrossRefGoogle Scholar
  46. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W. H. Freeman and Co., San Francisco (1977)Google Scholar
  47. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Co., NY (1983)Google Scholar
  48. Moskowitz, C.: If spacetime were a superfluid, would it unify physics—or is the theory all wet? Sci. Am. (2014). http://www.scientificamerican.com/article/superfluid-spacetime-relativity-quantum-physics/
  49. Moss, F., Wiesenfeld, K.: The benefits of background noise. Sci. Am. 273(2), 66–69 (1995)CrossRefGoogle Scholar
  50. Nigam, S., Baxter, S.: Teleconnections. In: Encyclopedia of Atmospheric Sciences, 2nd ed., pp. 90–109. Elsevier Ltd, London (2015)Google Scholar
  51. Nottale, L., Schneider, J.: Fractals and non-standard analysis. J. Math. Phys. 25, 1296–1300 (1984)CrossRefGoogle Scholar
  52. Ord, G.N.: Fractal space-time: a geometric analogue of relativistic quantum mechanics. J. Phys. A 16, 1869–1884 (1983)CrossRefGoogle Scholar
  53. Palmer, T.N.: Quantum reality, complex numbers, and the meteorological butterfly effect. Bull. Am. Meteorol. Soc. 86, 519–530 (2005)CrossRefGoogle Scholar
  54. Palmer, T.N.: The invariant set postulate: a new geometric framework for the foundations of quantum theory and the role played by gravity. Proc. R. Soc. A 465, 1–21 (2009)CrossRefGoogle Scholar
  55. Palmer, T.N.: Gödel and Penrose: new perspectives on determinism and causality in fundamental physics. Contemp. Phys. 55(3), 157–178 (2014)CrossRefGoogle Scholar
  56. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)CrossRefGoogle Scholar
  57. Penrose, R.: The Emperor’s New Mind. Oxford University Press, UK (1989)Google Scholar
  58. Perkins, R.: String field theory could be the foundation of quantum mechanics (2014). http://phys.org/news/2014-11-field-theory-foundation-quantummechanics.html
  59. Philander, S.G.: El Nino, La Nina and the Southern Oscillation. International Geophysical Series 46, Academic Press, NY (1990)Google Scholar
  60. Phys.org.: Atoms can be in two places at the same time. Retrieved 21 Jan 2015 from http://phys.org/news/2015-01-atoms.html
  61. Phys.org.: Experimentally testing nonlocality in many-body systems (2014). http://phys.org/news/2014-06-experimentally-nonlocality-many-body.html
  62. Popescu, S.: Nonlocality beyond quantum mechanics. Nat. Phys. 10, 264–270 (2014)CrossRefGoogle Scholar
  63. Puthoff, H.E.: Ground state of hydrogen as a zero-point fluctuation-determined state. Phys. Rev. D 35, 3266–3269 (1987)CrossRefGoogle Scholar
  64. Puthoff, H.E.: Gravity as a zero-point fluctuation force. Phys. Rev. A 39, 2333–2342 (1989)CrossRefGoogle Scholar
  65. Rae, A.: Quantum-physics: lllusion or reality?. Cambridge University Press, New York (1988)Google Scholar
  66. Ringbauer, M., Duffus, B., Branciard, C., Cavalcanti, E.G., White, A.G., Fedrizzi, A.: Measurements on the reality of the wavefunction. Nat. Phys. 11, 249–254 (2015)CrossRefGoogle Scholar
  67. Rini, M.: Synopsis: finding climate teleconnection paths. Physics, Dec 2015, American Physical Society. https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.115.268501
  68. Robens, C., Alt, W., Meschede, D., Emary, C., Alberti, A.: Ideal negative measurements in quantum walks disprove theories based on classical trajectories. Phys. Rev. X 5, 011003 (10 pages) (2015). doi: 10.1103/PhysRevX.5.011003)
  69. Sanders, L.: Everyday entanglement: physicists take quantum weirdness out of the lab. Sci. News 178(11), 22–29 (2010)CrossRefGoogle Scholar
  70. Sanz, A.S.: Investigating puzzling aspects of the quantum theory by means of its hydrodynamic formulation. Found. Phys. 45, 1153–1165 (2015)CrossRefGoogle Scholar
  71. Schertzer, D., Lovejoy, S.: Nonlinear Variability in Geophysics—Scaling and Fractals. Kluwer Academic press, Dordretch, Holland (1991)Google Scholar
  72. Schertzer, D., Lovejoy, S.: Multifractal generation of self-organized criticality. In: Novak, M.M. (ed.) Fractals in the Natural and Applied Sciences (A-41), pp. 325–339. Elsevier Science B.V., North-Holland (1994)Google Scholar
  73. Schlosshauer, M., Kofler, J., Zeilinger, A.: (2013a): Snapshot of foundational attitudes toward quantum mechanics. arXiv:1301.1069v1 [quant-ph] 6 Jan 2013
  74. Schlosshauer, M., Kofler, J., Zeilinger, A.: The interpretation of quantum mechanics: from disagreement to consensus? Ann. Phys. 525(4), A51–A54 (2013b)CrossRefGoogle Scholar
  75. Schroeder, M.: Fractals, Chaos and Power-Laws. W. H. Freeman and Co., NY (1991)Google Scholar
  76. Selvam, A.M.: Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows. Can. J. Phys. 68, 831–841 (1990). http://xxx.lanl.gov/html/physics/0010046
  77. Selvam, A.M.: Universal quantification for deterministic chaos in dynamical systems. Appl. Math. Model. 17, 642–649 (1993). http://xxx.lanl.gov/html/physics/0008010
  78. Selvam, A.M.: Quasicrystalline pattern formation in fluid substrates and phyllotaxis. In: Barabe, D., Jean, R.V. (eds.) Symmetry in Plants. World Scientific Series in Mathematical Biology and Medicine, vol. 4, pp. 795–809. Singapore (1998). http://xxx.lanl.gov/abs/chao-dyn/9806001
  79. Selvam, A.M.: Cantorian fractal spacetime and quantum-like chaos in neural networks of the human brain. Chaos, Solitons Fractals 10, 25–29 (1999). http://xxx.lanl.gov/abs/chao-dyn/9809003
  80. Selvam, A.M.: Chaotic Climate Dynamics. Luniver Press, UK (2007)Google Scholar
  81. Selvam, A.M.: Fractal fluctuations and statistical normal distribution. Fractals 17(3), 333–349 (2009). http://arxiv.org/pdf/0805.3426
  82. Selvam, A.M.: Quantum-like chaos in prime number distribution and in turbulent fluid flows. Apeiron 8, 29–64 (2001a). http://redshift.vif.com/JournalFiles/V08NO3PDF/V08N3SEL.PDF http://xxx.lanl.gov/html/physics/0005067
  83. Selvam, A.M.: Signatures of quantum-like chaos in spacing intervals of non-trivial Riemann zeta zeros and in turbulent fluid flows. Apeiron 8, 10–40 (2001b). http://redshift.vif.com/JournalFiles/V08NO4PDF/V08N4SEL.PDF http://xxx.lanl.gov/html/physics/0102028
  84. Selvam, A.M.: Cantorian fractal space-time fluctuations in turbulent fluid flows and the kinetic theory of gases. Apeiron 9, 1–20 (2002a). http://redshift.vif.com/JournalFiles/V09NO2PDF/V09N2sel.PDF http://xxx.lanl.gov/html/physics/9912035
  85. Selvam, A.M.: Quantumlike chaos in the frequency distributions of the bases A, C, G, T in Drosophila DNA. Apeiron 9, 103–148 (2002b). http://redshift.vif.com/JournalFiles/V09NO4PDF/V09N4sel.pdf http://arxiv.org/html/physics/0210068
  86. Selvam, A.M.: Scale-free universal spectrum for atmospheric aerosol size distribution for Davos, Mauna Loa and Izana. Int. J. Bifurcat. Chaos 23, 1350028 (13 pages) (2013) http://arxiv.org/pdf/1111.3132
  87. Selvam, A.M.: Universal inverse power-law distribution for temperature and rainfall in the UK region. Dyn. Atmos. Oceans 66, 138–150 (2014)CrossRefGoogle Scholar
  88. Selvam, A.M.: Rain Formation in Warm Clouds: General Systems Theory. SpringerBriefs in Meteorology. Springer (2015)Google Scholar
  89. Selvam, A.M., Fadnavis, S.: Signatures of a universal spectrum for atmospheric inter-annual variability in some disparate climatic regimes. Meteorol. Atmosp. Phys. 66, 87–112 (1998). http://xxx.lanl.gov/abs/chao-dyn/9805028
  90. Selvam, A.M., Sen, D., Mody, S.M.S.: Critical fluctuations in daily incidence of acute myocardial infarction. Chaos, Solitons Fractals 11, 1175–1182 (2000). http://xxx.lanl.gov/abs/chao-dyn/9810017
  91. Selvam, A.M., Joshi, R.R.: Universal spectrum for interannual variability in COADS global air and sea surface temperatures. Int. J. Climatol. 15, 613–624 (1995)CrossRefGoogle Scholar
  92. Selvam, A.M., Pethkar, J.S., Kulkarni, M.K.: Signatures of a universal spectrum for atmospheric interannual variability in rainfall time series over the Indian region. Int. J. Climatol. 12, 137–152 (1992)CrossRefGoogle Scholar
  93. Selvam, A.M., Pethkar, J.S., Kulkarni, M.K., Vijayakumar, R.: Signatures of a universal spectrum for atmospheric interannual variability in COADS surface pressure time series. Int. J. Climatol. 16, 1–11 (1996)CrossRefGoogle Scholar
  94. Shalm, L.K., Meyer-Scott, E., Christensen, B.G., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (10 pages) (2015)Google Scholar
  95. Spruch, L.: Long-range (Casimir) interactions. Science 272, 1452–1455 (1996)CrossRefGoogle Scholar
  96. Sreenivasan, K.R.: Fractals and multifractals in turbulence. Annu. Rev. Fluid Mech. 23, 539–600 (1991)CrossRefGoogle Scholar
  97. Stanley, H.E.: Exotic statistical physics: applications to biology, medicine, and economics. Phys. A 285, 1–17 (2000)CrossRefGoogle Scholar
  98. Stechmann, S.N., Neelin, J.D.: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci. 71(9), 3269–3291 (2014)CrossRefGoogle Scholar
  99. Steinhardt, P.: Crazy crystals. New Sci. 153, 32–35 (1997)Google Scholar
  100. Stewart, I.: Warning—handle with care! Nature 135, 16–17 (1992)CrossRefGoogle Scholar
  101. Stewart, I.: Sources of uncertainty in deterministic dynamics: an informal overview. Phil. Trans. R. Soc. A 369, 4705–4729 (2011)CrossRefGoogle Scholar
  102. Strambini, E., Makarenko, K.S., Abulizi, G., de Jong, M.P., van der Wiel, W.G.: Geometric reduction of dynamical nonlocality in nanoscale quantum circuits. Sci. R. 6, 18827 (6 pages) (2016)Google Scholar
  103. ’t Hooft, G.: Superstrings and the foundations of quantum mechanics. Found. Phys. 44, 463–471 (2014)CrossRefGoogle Scholar
  104. Tessier, Y., Lovejoy, S., Schertzer, D.: Universal multifractals: theory and observations for rain and clouds. J. Appl. Meteorol. 32, 223–250 (1993)CrossRefGoogle Scholar
  105. Tura, J., Augusiak, R., Sainz, A.B., Vértesi, T., Lewenstein, M., Acín, A.: Detecting nonlocality in many-body quantum states. Science 344(6189), 1256–1258 (2014)CrossRefGoogle Scholar
  106. Uzer, T., Farrelly, D., Milligan, J.A., Raines, P.E., Skelton, J.P.: Celestial mechanics on a microscopic scale. Science 253, 42–48 (1991)CrossRefGoogle Scholar
  107. Vedral, V.: The curious state of quantum physics. Phys. World 26(3), 30–34 (2013)CrossRefGoogle Scholar
  108. Vedral, V.: Living in a quantum world. Sci. Am. 38–43 (2011)Google Scholar
  109. Vivaldi, F.: Periodicity and transport from round-off errors. Exp. Math. 3(4), 303–315 (1994)CrossRefGoogle Scholar
  110. von Bertalanffy, L.: The history and status of general systems theory. Acad. Manage. J. 15(4), General Systems Theory, 407–426 (1972)Google Scholar
  111. von Karman, T.: Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. 34(11), 530–539 (1948)CrossRefGoogle Scholar
  112. von Kármán, Th. “Mechanische Ähnlichkeit und Turbulenz”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik) 5: 58–76(also as: “Mechanical Similitude and Turbulence”, Tech. Mem. NACA, no. 611, 1931) (1930)Google Scholar
  113. Wang, P., Huang, G., Wang, Z.: Analysis and application of multiple-precision computation and round-off error for nonlinear dynamical systems. Adv. Atmos. Sci. 23(5), 758–766 (2006)CrossRefGoogle Scholar
  114. Watkins, N.W., Pruessner, G., Chapman, S.C., Crosby, N.B.: 25 years of SOC: concepts and controversies. Space Sci. Rev. 198(1), 3–44 (2016)CrossRefGoogle Scholar
  115. Weinberg, S.: Dreams of a Final Theory: The Scientist’s Search for the Ultimate Laws of Nature. Vintage (1993)Google Scholar
  116. Yano, I., Liu, C., Moncrieff, M.W.: Self-organized criticality and homeostasis in atmospheric convective organization. J. Atmos. Sci. 69(12), 3449–3462 (2012)CrossRefGoogle Scholar
  117. Zeng, X., Pielke, R.A., Eykholt, R.: Chaos theory and its applications to the atmosphere. Bull. Am. Meteorol. Soc. 74, 631–644 (1993)CrossRefGoogle Scholar
  118. Zhou, D., Gozolchiani, A., Ashkenazy, Y., Havlin, S.: Teleconnection paths via climate network direct link detection. Phys. Rev. Lett. 115, 268501 (5 pages) (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ministry of Earth Sciences, Government of IndiaRetired from IITMPuneIndia

Personalised recommendations