Advertisement

Noise or Random Fluctuations in Physical Systems: A Review

  • Amujuri Mary SelvamEmail author
Chapter
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

‘Noise’ or random fluctuations characterize all physical systems in nature ranging from biology, botany, physiology, meteorology, astronomy, etc. The apparently irregular or chaotic fluctuations were considered as ‘noise’ in all fields except in astronomy , where the fluctuations from astronomical sources were referred to as signal. Noise and fluctuation has been a field of study since 1826 with the study of Brownian motion which indirectly confirmed the existence of atoms and molecules. The measured characteristics of noise contain recognizable patterns or signal and convey useful information about the system. Statistical data analysis techniques are used to extract the signal, i.e. recognizable patterns in the apparently random fluctuations of physical systems. The analysis of data sets and broad quantification in terms of probabilities belongs to the field of statistics. Early attempts resulted in identification of the following two quantitative (mathematical) distributions which approximately fit data sets from a wide range of scientific and other disciplines of study. The first is the well-known statistical normal distribution and the second is the power-law distribution associated with the recently identified ‘fractals’ or self-similar characteristic of data sets in general. Abraham de Moivre, an eighteenth-century statistician and consultant to gamblers made the first recorded discovery of the normal curve of error (or the bell curve because of its shape) in 1733. The importance of the normal curve stems primarily from the fact that the distributions of many natural phenomena are at least approximately normally distributed. This normal distribution concept underlies how we analyse experimental data over the last 200 years. Most quantitative research involves the use of statistical methods presuming independence among data points and Gaussian ‘normal’ distributions. The Gaussian distribution is reliably characterized by its stable mean and finite variance. Normal distributions place a trivial amount of probability far from the mean and hence the mean is representative of most observations. Even the largest deviations, which are exceptionally rare, are still only about a factor of two from the mean in either direction and are well characterized by quoting a simple standard deviation. However, apparently rare real-life catastrophic events such as major earth quakes, stock market crashes, heavy rainfall events, etc., occur more frequently than indicated by the normal curve, i.e. they exhibit a probability distribution with a fat tail. Fat tails indicate a power-law pattern and interdependence. The ‘tails’ of a power-law curve—the regions to either side that correspond to large fluctuations —fall off very slowly in comparison with those of the bell curve. The normal distribution is therefore an inadequate model for extreme departures from the mean. For well over a century evidence had been mounting that real-world behaviour in particular, behaviour of systems, whether natural, social, economic, or financial does not follow normal distribution characteristics. There is increased evidence for non-normality in real-world settings and in its place an alternative distribution, namely the power-law distribution is shown to be exhibited by real-world systems in all fields of science and other areas of human interest. In this chapter, the following are discussed. (i) A brief history of the two chief quantitative methods of statistical data analysis, namely the statistical normal distribution and the power-law distribution. (ii) The association of power-law distributions with complex systems, scale invariance, self-similarity, fractals, 1/f noise , long-term memory , phase transitions, critical phenomena , and self-organized criticality . (iii) Current status of power-law distributions. (iv) Power-law relations (bivariate) and power-law (probability) distributions. (v) Allometric scaling and fractals. (vi) Fractals and the golden section in plant growth. (vii) Turbulent fluid flow structure, fractals, and the golden ratio (≈1.618). (viii) Fractal space-time and the golden ratio. (ix) Power-law (probability) distributions in the meteorological parameters precipitation , temperature, quaternary ice volume fluctuations and atmospheric pollution. (x) General systems theory model for self-organized criticality (SOC) in atmospheric flows with universal quantification for power-law distribution in terms of the golden ratio.

Keywords

Noise and fluctuations Power law 1/f noise Self-organized criticality (SOC) General systems theory 

References

  1. Abbott, D.: Overview: unsolved problems of noise and fluctuations. Chaos Interdisc. J. Nonlinear Sci. 11(3), 526–538 (2001)CrossRefGoogle Scholar
  2. Ackermann, E.C.: The Golden Section. Am. Math. Mon. 2(9–10), 260–264 (1895)CrossRefGoogle Scholar
  3. Adler, I., Barabe, D., Jean, R.V.: A history of the study of phyllotaxis. Ann. Bot. 80, 231–244 (1997)CrossRefGoogle Scholar
  4. Amaral, L.A.N., Buldyrev, S.V., Havlin, S., Leschhorn, H., Maass, P., Salinger, M.A., Stanley, H.E., Stanley, M.H.R.: Scaling behaviour in economics: I. empirical results for company growth. Phys. A 244(1–4), 1–24 (1997)CrossRefGoogle Scholar
  5. Anderson, P.W.: More is different. Sci. New Ser. 177(4047), 393–396 (1972)Google Scholar
  6. Andrade Jr., J.S., Wainer, I., Filho, J.M., Moreira, J.E.: Self-organized criticality in the El Niño southern oscillation. Phys. A 215(3), 331–338 (1995)CrossRefGoogle Scholar
  7. Andrade, R.F.S., Schellnhuber, H.J., Claussen, M.: Analysis of rainfall records: possible relation to self-organized criticality. Phys. A (Stat. Mech. Appl.) 254(3–4), 557–568 (1998)CrossRefGoogle Scholar
  8. Andriani, P., McKelvey, B.: Beyond Gaussian averages: redirecting management research toward extreme events and power laws. J. Int. Bus. Stud. 38, 1212–1230 (2007)CrossRefGoogle Scholar
  9. Arakawa, A.: Atmospheric physics: scaling tropical rain. News Views Nat. Phys. 2, 373–374 (2006)Google Scholar
  10. Aschwanden, M.J., Crosby, N.B., Dimitropoulou, M., Georgoulis, M.K., Hergarten, S., McAteer, J., Milovanov, A.V., Mineshige, S., Morales, L., et al.: 25 years of self-organized criticality: solar and astrophysics. Space Sci. Rev. 198(1), 47–166 (2016)CrossRefGoogle Scholar
  11. Auerbach, F.: Das Gesetz Der Bevolkerungskoncentration. Petermanns Geogr. Mitt. 59, 74–76 (1913)Google Scholar
  12. Baek, S.K., Bernhardsson, S., Minnhagen, P.: Zipf’s law unzipped. New J. Phys. 13, 043004, 21 (2011). http://arxiv.org/pdf/1104.1789v1.pdf
  13. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefGoogle Scholar
  14. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)CrossRefGoogle Scholar
  15. Berche, B., Malte, H., Kenna, R. Critical phenomena: 150 years since Cagniard de la Tour. J. Phys. Stud. 13(3), 3001, 4 (2009). arXiv:0905.1886v1[physics.hist-ph]
  16. Blender, R., Fraedrich, K.: Long time memory in global warming simulations. Geophys. Res. Lett. 30, 1769–1772 (2003)CrossRefGoogle Scholar
  17. Blender, R., Fraedrich, K., Hunt, B. Millennial climate variability: GCM-simulation and Greenland ice cores. Geophys. Res. Lett. 33, L04710, 4 (2006)Google Scholar
  18. Blender, R., Zhu, X., Fraedrich, K.: Observation and modelling of 1/f noise in weather and climate. Adv. Sci. Res. 6, 137–140 (2011)CrossRefGoogle Scholar
  19. Bodenschatz, E., Malinowski, S.P., Shaw, R.A., Stratmann, F.: Can we understand clouds without turbulence? Science 327(5968), 970–971 (2010)CrossRefGoogle Scholar
  20. Bonnet, C.: Recherches Sur L’usage Des Feuilles Dans Les Plantes. E. Luzac fils, Gottingen and Leyden (1754)Google Scholar
  21. Bouchaud, J.P., Sornette, D., Walter, C., Aguilar, J.P.: Taming large events: optimal portfolio theory for strongly fluctuating assets. Int. J. Theor. Appl. Finan. 1(1), 25–41 (1998)CrossRefGoogle Scholar
  22. Bove, R., Pelino, V., De Leonibus, L.: Complexity in rainfall phenomena. Commun. Nonlinear Sci. Numer. Simul. 11(6), 678–684 (2006)CrossRefGoogle Scholar
  23. Bradley, J.V.: Distribution-Free Statistical Tests. Englewood Cliffs, Prentice-Hall, N.J. (1968)Google Scholar
  24. Braun, A.: Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenpflanzen als Einleitung zur Untersuchung der Blattstellung überhaupt. Nova Acta Ph Med. Acad. Cesar Leop Carolina Nat Curiosorum 15, 195–402 (1831)Google Scholar
  25. Bravais, L., Bravais, A.: Essai sur la disposition des feuilles curvisériées. Ann. Sci. Nat. Bot. Biol. Vég. 7, 42–110, 193–221, 91–348; 8, 11–42 (1837)Google Scholar
  26. Brown, J.H., Gupta, V.K., Li, B.-L., Milne, B.T., Restrepo, C., West, G.B.: The fractal nature of nature: power laws, ecological complexity and biodiversity. Phil. Trans. R. Soc. Lond. B 357, 619–626 (2002)CrossRefGoogle Scholar
  27. Buchanan, M.: Power laws and the new science of complexity management. Strategy Bus. Issue 34, 70–79 (2004)Google Scholar
  28. Buckingham, E.: On physically similar systems—illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)CrossRefGoogle Scholar
  29. Cahalan, R., Joseph, J.: Fractal statistics of cloud fields. Mon. Wea. Rev. 117, 261–272 (1989)CrossRefGoogle Scholar
  30. Charney, J.G.: Geostrophic turbulence. J. Atmos. Sci. 28, 1087–1095 (1971)CrossRefGoogle Scholar
  31. Chen, Y.: Zipf’s law, 1/f noise, and fractal hierarchy. Chaos Solitons Fractals 45, 63–73 (2012)Google Scholar
  32. Clauset, A., Shalizi, C.R., Newman, M. E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703. (2009) arXiv:0706.1062v2[physics.data-an]. 2 Feb 2009
  33. Cronbach, L.: Essentials of Psychological Testing. Harper and Row, New York (1970)Google Scholar
  34. Cummings, F.W., Strickland, J.C.: A model of phyllotaxis. J. Theor. Biol. 192, 531–544 (1998)CrossRefGoogle Scholar
  35. Deluca, A., Corral, A.: Scale invariant events and dry spells for medium resolution local rain data. Nonlin. Process. Geophys. 21, 555–567. (2014) arXiv:1212.5533v1[physics.ao-ph]
  36. Deluca, A., Moloney, N. R., Corral, A.: Data-driven prediction of thresholded time series of rainfall and SOC models. Phys. Rev. E 91(5), 052808. (2015) arXiv:1411.2256[physics.data-an]
  37. Deluca, A., Puig, P., Corral, A.: Testing universality in critical exponents: the case of rainfall. Phys. Rev. E 93, 042301. (2016) arXiv:1508.06516v1[physics.data-an]
  38. Devineni, N., Lall, U., Xi, C., Ward, P.: Scaling of extreme rainfall areas at a planetary scale. Chaos 25, 075407 (2015)CrossRefGoogle Scholar
  39. Doukhan, P., Oppenheim, G., Taqqu, M.S. (eds.): Theory and Applications of Long-Range Dependence. Birkhauser, Boston, MA (2003)Google Scholar
  40. Eichner, J.F., Koscielny-Bunde, E., Bunde, A., Havlin, S., Schellnhuber, H.-J.: Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Phys. Rev. E 68, 046133 (2003)CrossRefGoogle Scholar
  41. Einstein, A .: “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen” (PDF). “Investigations on the theory of Brownian Movement”. Translated by A.D Cowper. Annalen der Physik 17(8), 549–560 (1905)Google Scholar
  42. El Naschie, M.S.: Is quantum space a random cantor set with a golden mean dimension at the core? Chaos Solitons Fractals 4(2), 177–179 (1994)CrossRefGoogle Scholar
  43. Estoup, J.B.: Gammes Stenographiques. Institut Stenographique de France, Paris (1916)Google Scholar
  44. Fama, F.: The behavior of stock-market prices. J. Bus. 38, 34–105 (1965)CrossRefGoogle Scholar
  45. Farmer, J.D. Geanakoplos, J.: Power laws in economics and elsewhere. (2008) www.santafe.edu/~jdf/papers/powerlaw3.pdf
  46. Fatichi, S., Barbosa, S.M., Caporali, E., Silva, M.E.: Deterministic versus stochastic trends: Detection and challenges. J. Geophys. Res. 114, D18121 (2009)CrossRefGoogle Scholar
  47. Fiedler, F., Panofsky, H.A.: Atmospheric scales and spectral gaps. Bull. Amer. Meteor. Soc. 51, 1114–1119 (1970)CrossRefGoogle Scholar
  48. Fisher, M.E.: The theory of equilibrium critical phenomena. Rep. Prog. Phys. 30(2), 615–730 (1967)CrossRefGoogle Scholar
  49. Fraedrich, K., Blender, R.: Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett. 90, 108501, 4 (2003)Google Scholar
  50. Fraedrich, K., Bottger, H.: A wavenumber frequency analysis of the 500 mb geopotential at 50°N. J. Atmos. Sci. 35, 745–750 (1978)CrossRefGoogle Scholar
  51. Fraedrich, K., Larnder, C.: Scaling regimes of composite rainfall time series. Tellus 45A, 289–298 (1993)CrossRefGoogle Scholar
  52. Fraedrich, K., Blender, R., Zhu, X.: Continuum climate variability: long-term memory, scaling, and 1/f-noise. Int. J. Mod. Phys. B 23(28 and 29), 5403–5416 (2009)Google Scholar
  53. Fraedrich, K., Luksch, U., Blender, R.: 1/f model for long-time memory of the ocean surface temperature. Phys. Rev. E 70, 037301, 4 (2004)Google Scholar
  54. Franzke, C.: Long-range dependence and climate noise characteristics of antarctic temperature data. J. Clim. 23, 6074–6081 (2010)CrossRefGoogle Scholar
  55. Franzke, C.: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Clim. 25, 4172–4183 (2012)CrossRefGoogle Scholar
  56. Gayon, J.: History of the concept of allometry. Amer. Zool. 40(5), 748–758 (2000)Google Scholar
  57. Ghil, M., Robertson, A.W.: “Waves” vs. “particles” in the atmosphere’s phase space: a pathway to long-range forecasting? Colloquium PNAS 99(suppl. 1), 2493–2500. (2002) Arthur M. Sackler Colloquium of the National Academy of Sciences, “Self-Organized Complexity in the Physical, Biological, and Social Sciences,” held March 23–24, 2001, at the Arnold and Mabel Beckman Center of the National Academies of Science and Engineering in Irvine, CAGoogle Scholar
  58. Gil-Alana, L.A.: Statistical modeling of the temperatures in the Northern Hemisphere using fractional integration techniques. J. Clim. 18, 5357–5369 (2005)CrossRefGoogle Scholar
  59. Goertzel, T., Fashing, J.: The myth of the normal curve: a theoretical critique and examination of its role in teaching and research. Humanity Soc. 5, 14–31 (1981); reprinted in Readings in Humanist Sociology, General Hall, 1986. http://crab.rutgers.edu/~goertzel/normalcurve.htm 4/29/2007
  60. Graves, T., Gramacy, R.B., Franzkez, C., Watkins, N.W.: Effcient Bayesian inference for long memory processes. Nonlin. Proc. Geophys. Discuss. 2, 573–618. (2014) arXiv:1403.2940v1[stat.ME]
  61. Greene, W.H.: Econometric Analysis, 5th edn. Prentice-Hall, Englewood Cliffs, NJ (2002)Google Scholar
  62. Grieger, B.: Quaternary climatic fluctuations as a consequence of self-organized criticality. Phys. A 191, 51–56 (1992)CrossRefGoogle Scholar
  63. Gupta, V.K., Waymire, E.: Spatial variability and scale invariance in hydrologic regionalization. In Sposito, G. (ed.) Scale Dependence and Scale Invariance in Hydrology, pp. 88–135. Cambridge University Press (1998a)Google Scholar
  64. Gupta, V.K., Waymire, E.: Some mathematical aspects of rainfall, landforms and floods. In Barndorff-Nielsen, O.E., Gupta, V.K., Perez-Abreu, V., Waymire, E.C. (eds.) Advanced Series in Statistical Sciences and Applied Probability, vol. 7, pp. 129–172. World Scientific, Singapore (1998b)Google Scholar
  65. Gupta, V.K., Waymire, E.: Statistical self-similarity in river networks parameterized by elevation. Water Resour. Res. 25, 463–467 (1989)Google Scholar
  66. Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 34, 185–188 (1944)Google Scholar
  67. Gutenberg, B., Richter, C.F.: Magnitude and energy of earthquakes. Ann. Geofis. 9, 1–15 (1956)Google Scholar
  68. Haldane, A.G.: Tails of the unexpected. Given at “The Credit Crisis Five Years On: Unpacking the Crisis”, conference held at the University of Edinburgh Business School (2012). 8–9 June 8 June 2012. All speeches are available online at www.bankofengland.co.uk/publications/Pages/speeches/default.aspx
  69. Hartmann, D.: Time spectral analysis of midlatitude disturbances. Mon. Wea. Rev. 102, 348–362; Corrigendum: 541–542 (1974)Google Scholar
  70. Horton, R.E.: Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 56, 275–370 (1945)CrossRefGoogle Scholar
  71. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–808. With discussion (1951)Google Scholar
  72. Huybers, P., Curry, W.: Links between annual, Milankovitch and continuum temperature variability. Nature 441, 329–332 (2006)CrossRefGoogle Scholar
  73. Ibbitt, R.P., McKercher, A.I., Duncaeri, M.J.: Taieri River data to test channel network and river basin heterogeneity concepts. Water Resour. Res. 34, 2085–2088 (1998)CrossRefGoogle Scholar
  74. Jean, R.V.: Phyllotaxis: A systemic study in plant morphogenesis. Cambridge University Press, Cambridge and New York (1994)CrossRefGoogle Scholar
  75. Jiang, T., Zhang, Q., Blender, R., Fraedrich, K.: Yangtze delta floods and droughts of the last millennium: Abrupt changes and long term memory. Theor. Appl. Climatol. 82, 131–141 (2005)CrossRefGoogle Scholar
  76. Jordan, T.: Does self-organised criticality occur in the tropical convective system?. This dissertation is submitted to the Department of Mathematics and the Department of Meteorology in partial fulfilment of the requirements for the degree of Master of Science, University of Reading, School of Mathematics, Meteorology and Physics (2008)Google Scholar
  77. Joshi, R.R., Selvam, A.M.: Identification of self-organized criticality in atmospheric low frequency variability. Fractals 7(4), 421–425 (1999)CrossRefGoogle Scholar
  78. Kai, S., Chun-Qiong, L., Si-Chuan, L.: Self-organized criticality: emergent complex behavior in PM10 pollution. Int. J. Atmos. Sci. Hindawi Publishing Corporation, Article 419694, 7 (2013)Google Scholar
  79. Kavvas, M.L., Govindaraju, R.S., Lall, U.: Introduction to the focus issue: physics of scaling and self-similarity in hydrologic dynamics, hydrodynamics, and climate. Chaos 25, 075201, 2 (2015)Google Scholar
  80. Keshner, M.S.: 1/f noise. Proc. IEEE 70, 212–218 (1982)CrossRefGoogle Scholar
  81. King, S., Beck, F., Lüttge, U.: On the mystery of the golden angle in phyllotaxis. Plant Cell Environ. 27, 685–695 (2004)CrossRefGoogle Scholar
  82. Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301–305 (1941)Google Scholar
  83. Koscielny-Bunde, E., Bunde, A., Havlin, S., Roman, H.E., Goldreich, Y., Schellnhuber, H.-J.: Indication of a universal persistence law governing atmospheric variability. Phys. Rev. Lett. 81, 729–732 (1998)CrossRefGoogle Scholar
  84. Ladoy, P., Lovejoy, S., Schertzer, D.: Extreme variability of climatological data: scaling and intermittency. In: Non-linear Variability in Geophysics, pp. 241–250, Springer, Netherlands (1991)Google Scholar
  85. Lavergnat, J., Gole, P.: A stochastic model of raindrop release: application to the simulation of point rain observations. J. Hidrol. 328, 8–19 (2006)CrossRefGoogle Scholar
  86. Leonardo Fibonacci of Pisa, 1202: Fibonacci’s Liber AbaciGoogle Scholar
  87. Leopold, L.B., Miller, J.P.: Ephemeral streams—hydraulic factors and their relation to the drainage net. US Geol. Surv. Prof. Paper 282A (1956)Google Scholar
  88. Li, M., Zhao, W.: Golden ratio phenomenon of random data obeying von Karman spectrum. Math. Probl. Eng. 2013, 1–6 (2013a). doi: 10.1155/2013/130258 Google Scholar
  89. Li, M., Zhao, W.: Essay on Kolmogorov law of minus 5 over 3 viewed with Golden ratio. Adv. High Energy Phys. 2013, 1–3 (2013b). doi: 10.1155/2013/680678 Google Scholar
  90. Liebovitch, L.S., Scheurle, D.: Two lessons from fractals and chaos. Complexity 5(4), 34–43 (2000)CrossRefGoogle Scholar
  91. Liu, S.H.: Formation and anomalous properties of fractals. IEEE Eng. Med. Biol. 28–39 (June, 1992)Google Scholar
  92. Liu, Z., Xu, J., Shi, K.: Self-organized criticality of climate change. Theoret. Appl. Climatol. 115(3–4), 685–691 (2014)CrossRefGoogle Scholar
  93. Liu, Z., Wang, L., Zhu, H.: A time-scaling property of air pollution indices: a case study of Shanghai, China. Atmos. Pollut. Res. 6, 886–892 (2015)CrossRefGoogle Scholar
  94. Lovejoy, S.: Area-perimeter relation for rain and cloud areas. Science 216, 185–187 (1982)CrossRefGoogle Scholar
  95. Lovejoy, S., Mandelbrot, B.B.: Fractal properties of rain, and a fractal model. Tellus 37A, 209–232 (1985)CrossRefGoogle Scholar
  96. Lovejoy, S., Schertzer, D.: Scale invariance, symmetries, fractals, and stochastic simulations of atmospheric phenomena. Bull. Am. Meteorol. Soc. 67, 21–32 (1986a)CrossRefGoogle Scholar
  97. Lovejoy, S., Schertzer, D.: Scale in variance in climatological temperatures and the local spectral plateau. Annates Geophysicae 86B, 401–409 (1986b)Google Scholar
  98. Lovejoy, S., Schertzer, D. (eds.): Nonlinear Variability in Geophysics: Scaling and Fractals. Kluwer, Dordrecht (1991)Google Scholar
  99. Lovejoy, S., Schertzer, D.: Towards a new synthesis for atmospheric dynamics: space-time cascades. Atmos. Res. 96, 1–52 (2010)CrossRefGoogle Scholar
  100. Mandelbrot, B.B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)CrossRefGoogle Scholar
  101. Mandelbrot, B.B.: Very long-tailed probability distributions and the empirical distribution of city sizes. In: Massarik, F., Ratoosh, P. (eds.) Mathematical Explanations in Behavioral Science, pp. 322–332. Homewood Editions, New York (1965a)Google Scholar
  102. Mandelbrot, B.B.: Time-Varying Channels, 1/F Noises and The Infrared Catastrophe, or: Why Does The Low Frequency Energy Sometimes Seem Infinite?. IEEE Communication Convention, Boulder CO (1965b)Google Scholar
  103. Mandelbrot, B.B.: Self-similar error clusters in communications systems and the concept of conditional stationarity. IEEE Trans. Commun. Technol. 13, 71–90. © Institute of Electrical and Electronics Engineers (1965c)Google Scholar
  104. Mandelbrot, B.B., Van Ness, J.W.: Fractional brownian motions, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)CrossRefGoogle Scholar
  105. Mandelbrot, B.B., Wallis, J.R.: Noah, Joseph and operational hydrology. Water Resour. Res. 4(5), 909–918 (1968)CrossRefGoogle Scholar
  106. Mandelbrot, B.B., Wallis, J.R.: Some long-run properties of geophysical records. Water Resour. Res. 5(2), 321–340 (1969a)CrossRefGoogle Scholar
  107. Mandelbrot, B.B., Wallis, J.R.: Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence. Water Resour. Res. 5, 967–988 (1969b)CrossRefGoogle Scholar
  108. Mandelbrot, B.B.: Fractals: form, chance and dimension. W. H. Free-man and Co., San Francisco (1977)Google Scholar
  109. Mandelbrot, B.B.: Fractals and Scaling in Finance. Springer, NewYork (1997)CrossRefGoogle Scholar
  110. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Free-man and Co., San Francisco (1983)Google Scholar
  111. Mandelbrot, B.B., Hudson, R.L.: The (mis) behaviour of markets: a fractal view of risk, ruin and reward. Basic Books, New York (2004)Google Scholar
  112. Markovic, D., Gros, C.: Power laws and self-organized criticality in theory and nature. Phys. Rep. 536(2), 41–74. (2013) arxiv:1310.5527v3[nlin.AO]
  113. Mauldin, R.D., Williams, S.C.: Random recursive construction. Trans. Am. Math. Sm. 295, 325–346 (1986)CrossRefGoogle Scholar
  114. Miramontes, P., Li, W., Cocho, G.: Some critical support for power laws and their variations. (2012) arXiv:1204.3124v1[nlin.AO
  115. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Math. 1(2), 226–251 (2003)CrossRefGoogle Scholar
  116. Monetti, R.A., Havlin, S., Bunde, A.: Long-term persistence in the sea surface temperature fluctuations. Phys. A 320, 581–589 (2003)CrossRefGoogle Scholar
  117. Montroll, E.W., Shlesinger, M.F.: On 1/f noise and other distributions with long tails. Proc. Natl. Acad. Sci. 79, 3380–3383 (1982)CrossRefGoogle Scholar
  118. Montroll, E.W., Shlesinger, M.F.: Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: a tale of tails. J. Stat. Phys. 32, 209–230 (1983)CrossRefGoogle Scholar
  119. Montroll, E.W., Shlesinger, M.F.: On the wonderful world of random walks. In: Lebowitz, J.L., Montroll, E.W. (eds.) Nonequilibrium Phenomena II, from Stochastic to Hydrodynamics, pp. 1–121. North Holland, Amsterdam (1984)Google Scholar
  120. Nagel, K., Raschke, E.: Self-organized criticality in cloud formation? Phys. A 182, 519–531 (1992)CrossRefGoogle Scholar
  121. Neelin, J.D., Peters, O., Hales, K.: The transition to strong convection. J. Atmos. Sci. 66(8), 2367–2384 (2009)CrossRefGoogle Scholar
  122. Neelin, J.D., Peters, O., Lin, J.W.-B., Hales, K., Holloway, C.E.: Rethinking convective quasi-equilibrium: observational constraints for stochastic convective schemes in climate models. Phil. Trans. R. Soc. A 366, 2581–2604 (2008)CrossRefGoogle Scholar
  123. Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)CrossRefGoogle Scholar
  124. Olsson, J., Niemczynowicz, J., Berndtsson, R.: Fractal analysis of high-resolution rainfall time series. J. Geophys. Res. 98, 23265–23274 (1993)CrossRefGoogle Scholar
  125. Omori, F.: On the aftershocks of earthquakes. J. Coll. Sci. 7, 111–200 (1894). (Imperial University of Tokyo)Google Scholar
  126. Snell, O.: Die Abhängigkeit des Hirngewichts von dem Körpergewicht und den geistigen Fähigkeiten. Arch. Psychiatr. 23(2), 436–446 (1892)CrossRefGoogle Scholar
  127. Pareto, V.: Cours d’Économie Politique Professé a l’Université de Lausanne, vol. I (1896)Google Scholar
  128. Pareto, V.: Cours d’Économie Politique Professé a l’Université de Lausanne, vol. II (1897)Google Scholar
  129. Pearson, K.: The Grammar of Science (2nd ed.). Adam and Charles Black, London (1900)Google Scholar
  130. Peckham, S.D., Gupta, V.K.: A reformulation of Horton’s law for large river networks in terms of statistical self- similarity. Water Resour. Res. 35, 2763–2777 (1999)CrossRefGoogle Scholar
  131. Pelino, V., Matera, A., Colombo, T., Giorgi, F.: Validation of precipitation events in a regional climate model simulation using methods from complex systems theory. Theoret. Appl. Climatol. 84(4), 213–218 (2006)CrossRefGoogle Scholar
  132. Peters, O., Hertlein, C., Christensen, K.: A complexity view of rainfall. Phys. Rev. Lett., 88(1), 018701(1–4) (2002)Google Scholar
  133. Peters, O., Neelin, J.D., Nesbitt, S.W.: Mesoscale convective systems and critical clusters. J. Atmos. Sci. 66(9), 2913–2924 (2009)CrossRefGoogle Scholar
  134. Peters, O., Christensen, K.: Rain: relaxations in the sky. Phys. Rev. E 66, 036120 (1–9) (2002), arXiv:cond-mat/0204109v1[cond-mat.soft]
  135. Peters, O., Christensen, K.: Rain viewed as relaxation events. J. Hydrol. 328(1–2), 46–55 (2006)CrossRefGoogle Scholar
  136. Peters, O., Neelin, J.D.: Critical phenomena in atmospheric precipitation. Nat. Phys. 2(6), 393–396 (2006)CrossRefGoogle Scholar
  137. Peters, O., Deluca, A., Corral, A. Neelin, J.D., Holloway, C.E.: Universality of rain event size distributions. J. Stat. Mech. Theory Exp. 11, P11030, (2010) arXiv:1010.4201v1[physics.ao-ph]
  138. Pinto, C.M.A., Lopes, A.M., Machado, J.A.T.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simulat. 17, 3558–3578 (2012)CrossRefGoogle Scholar
  139. Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Fibonacci family of dynamical universality classes. PNAS 112(41), 12645–12650 (2015)CrossRefGoogle Scholar
  140. Press, W.H.: Flicker noises in astronomy and elsewhere. Comments Mod. Phys. Part C-Comments Astrophys. 7(4), 103–119 (1978)Google Scholar
  141. Pruessner, G.: Studies in self-organised criticality. A thesis presented for the degree of Doctor of Philosophy of the University of London and the Diploma of Imperial College (2004)Google Scholar
  142. Pruessner, G., Peters, O.: Self-organized criticality and absorbing states: lessons from the Ising model. Phys. Rev. E 73(2), 025106(1–4) (2006)Google Scholar
  143. Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. London Ser. A 110, 709–737 (1926)CrossRefGoogle Scholar
  144. Richardson, L.F.: 1960: The problem of contiguity: an appendix to statistics of deadly quarrels. In: Von Bertalanffy, L., Rapoport, A. (eds.) General Systems—Year Book of the Society for General Systems Research V, pp. 139–187. MI, Ann Arbor (1960)Google Scholar
  145. Rybski, D., Bunde, A., Havlin, S., von Storch, H.: Longterm persistence in climate and the detection problem. Geophys. Res. Lett. 33, L06718(1–4) (2006)Google Scholar
  146. Samorodnitsky, G.: Long memory and self-similar processes. Annales de la faculté des sciences de Toulouse Mathématiques 15(1), 107–123 (2006)CrossRefGoogle Scholar
  147. Samorodnitsky, G.: Long-range dependence. Found. Trends Stochast. Syst. 1(3), 163–257 (2007)CrossRefGoogle Scholar
  148. Sarkar, A., Barat, P.: Analysis of rainfall records in India: self organized criticality and scaling. Fractals 14(4), 289–293. (2006) arxiv.org/pdf/physics/0512197
  149. Schick, K.L., Verveen, A.A.: 1/f noise with a low frequency white noise limit. Nature 251, 599–601 (1974)CrossRefGoogle Scholar
  150. Schimper, C.F.: Geometrische Anordnung der um eine Axe periferischen Blattgebilde. Verhandl Schweiz Naturf Ges 21, 113–117 (1836)Google Scholar
  151. Selvam, A.M.: Deterministic chaos, fractals and quantumlike mechanics in atmospheric flows. Can. J. Phys. 68, 831–841. (1990) http://xxx.lanl.gov/html/physics/0010046
  152. Selvam, A.M., Pethkar, J.S., Kulkarni, M.K.: Signatures of a universal spectrum for atmospheric interannual variability in rainfall time series over the Indian Region. Int. J. Climatol. 12, 137–152 (1992)CrossRefGoogle Scholar
  153. Selvam, A.M.: A universal spectrum for interannual variability of monsoon rainfall over India. Adv. Atmos. Sci. 10(2), 221–226 (1993)CrossRefGoogle Scholar
  154. Selvam, A.M., Radhamani, M.: Signatures of a universal spectrum for nonlinear variability in daily columnar total ozone content. Adv. Atmos. Sci. 11(3), 335–342 (1994)CrossRefGoogle Scholar
  155. Selvam, A.M., Radhamani, M.: Universal spectrum for short period (days) variability in atmospheric total ozone. Mausam 46(3), 297–303 (1995)Google Scholar
  156. Selvam, A.M., Joshi, R.R.: Universal spectrum for interannual variability in COADS global air and sea surface temperatures. Int J. Climatol. 15, 613–623 (1995)CrossRefGoogle Scholar
  157. Selvam, A.M., Pethkar, J.S., Kulkarni, M.K.: Some unique characteristics of atmospheric interannual variability in rainfall time series over India and the United Kingdom. Adv. Atmos. Sci. 12(3), 377–385 (1995)CrossRefGoogle Scholar
  158. Selvam, A.M., Pethkar, J.S., Kulkarni, M.K., Vijayakumar, R.: Signatures of a universal spectrum for atmospheric interannual variability in COADS surface pressure time series. Int J. Climatol. 16, 393–404 (1996)CrossRefGoogle Scholar
  159. Selvam, A. M., Suvarna Fadnavis.: Signatures of a universal spectrum for atmospheric interannual variability in some disparate climatic regimes. Meteorol. Atmos. Phys. 66, 87–112. (1998) http://xxx.lanl.gov/abs/chao-dyn/9805028
  160. Selvam, A.M.: Chaotic Climate Dynamics. Luniver Press, UK (2007)Google Scholar
  161. Selvam, A.M.: Fractal fluctuations and statistical normal distribution. Fractals 17(3), 333–249. (2009) http://arxiv.org/pdf/0805.3426
  162. Selvam, A.M.: Signatures of universal characteristics of fractal fluctuations in global mean monthly temperature anomalies. J. Syst. Sci. Complex. 24(1), 14–38 (2011a)CrossRefGoogle Scholar
  163. Selvam, A.M.: A general systems theory for atmospheric flows and atmospheric aerosol size distribution. Chaotic Modeling and Simulation (CHAOS 2011 Conference Proceedings) 461–468. (2011b) http://arxiv.org/ftp/arxiv/papers/0908/0908.2321.pdf
  164. Selvam, A.M.: Universal spectrum for atmospheric suspended particulates: comparison with observations. Chaos Complex. Lett. 6(3), 1–43. (2012a) http://arxiv.org/abs/1005.1336
  165. Selvam, A.M.: Universal spectrum for atmospheric aerosol size distribution: comparison with pcasp-b observations of vocals 2008. Nonlinear Dyn. Syst. Theor. 12(4), 397–434. (2012b) http://arxiv.org/abs/1105.0172
  166. Selvam, A.M.: Scale-free universal spectrum for atmospheric aerosol size distribution for Davos, Mauna Loa and Izana. Int. J. Bifurcation Chaos 23, 1350028 (1–13). (2013) http://arxiv.org/pdf/1111.3132
  167. Selvam, A.M.: Universal inverse power-law distribution for temperature and rainfall in the UK region. Dyn. Atmos. Oceans 66, 138–150 (2014)CrossRefGoogle Scholar
  168. Selvam, A.M.: Rain Formation in Warm Clouds: General Systems Theory. SpringerBriefs in Meteorology, Springer (2015)Google Scholar
  169. Smoluchowski, M.: Essai d’une théorie cinétique du mouvement Brownien et des milieux troubles (Outline of the kinetic theory of Brownian motion of suspensions). Bulletin International de l’Académie des Sciences de Cracovie, 577–602 (1906)Google Scholar
  170. Sornette, D.: Critical Phenomena in Natural Sciences. Springer Series in Synergetics (2006)Google Scholar
  171. Sornette, D.: Probability distributions in complex systems. In: Meyers, R.A. (ed.) Computational Complexity, pp. 2286–2300. Springer, New York (2012). http://arxiv.org/pdf/0707.2194v1.pdf
  172. Sornette, D., Ouillon, G.: Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur. Phys. J. Spec. Top. 205, 1–26 (2012)CrossRefGoogle Scholar
  173. Stumpf, M.P.H., Porter, M.A.: Critical truths about power laws. Science 335(6069), 665–666 (2012)CrossRefGoogle Scholar
  174. Thompson, D.W.: On Growth and Form. Cambridge Univ. Press, Cambridge (1942). (The first edition appeared in 1917)Google Scholar
  175. Turcotte, D.L.: Self-organized criticality. Rep. Prog. Phys. 62, 1377–1429 (1999)CrossRefGoogle Scholar
  176. Van der Hoven, I.: Power spectrum of the horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteor. 14, 160–164 (1957)CrossRefGoogle Scholar
  177. Van Der Ziel, A.: On the noise spectra of semi-conductor noise and of flicker effect. Physica 16(4), 359–372 (1950)CrossRefGoogle Scholar
  178. Vattay, G., Harnos, A.: Scaling behavior in daily air humidity fluctuations. Phys. Rev. Lett. 73(5), 768–771 (1994)CrossRefGoogle Scholar
  179. Vinnichenko, N.K.: The kinetic energy spectrum in the free atmosphere, 1 second to 5 years. Tellus 22(2), 158–166 (1970)CrossRefGoogle Scholar
  180. von Karman, T.: Progress in the statistical theory of turbulence. Proc. Nat. Acad. Sci. 34(11), 530–539 (1948)CrossRefGoogle Scholar
  181. von Kármán, Th.: Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Fachgruppe 1 (Mathematik) 5, 58–76 (also as: Mechanical Similitude and Turbulence, Tech. Mem. NACA, no. 611, 1931) (1930)Google Scholar
  182. Wang, G., Jiang, T., Blender, R., Fraedrich, K.: Yangtze 1/f discharge variability and the interacting river-lake system. J. Hydrol. 351, 230–237 (2008)CrossRefGoogle Scholar
  183. Wang, Z., Huang, C.: Self-organized criticality of rainfall in central china. Adv. Meteorol. 203682(1–8) (2012)Google Scholar
  184. Watkins, N.W., Pruessner, G., Chapman, S.C., Crosby, N.B.: 25 Years of SOC: concepts and controversies. Space Sci. Rev. 198(1), 3–44 (2016)CrossRefGoogle Scholar
  185. Weissman, M.B.: 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988)CrossRefGoogle Scholar
  186. West, B.J.: Colloquium: fractional calculus view of complexity: a tutorial. Rev. Mod. Phys. 86, 1169–1184 (2014)CrossRefGoogle Scholar
  187. West, G.B., Brown, J.H.: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592, Published by The Company of Biologists 2005, (2005). doi: 10.1242/jeb.01589
  188. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997)CrossRefGoogle Scholar
  189. West, G.B., Brown, J.H., Enquist, B.J.: The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999)Google Scholar
  190. Willinger, W., Alderson, D., Doyle, J. C., Li, L.: More “normal” than normal: Scaling distributions and complex systems. In: Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference, pp. 130–141 (2004)Google Scholar
  191. Wilson, E.B., Hilferty, M.M.: Note on C.S. Peirce’s experimental discussion of the law of errors. Proc. Natl. Acad. Sci. U.S.A. 15(2), 120–125 (1929)CrossRefGoogle Scholar
  192. Wilson, K.G.: Problems in physics with many scales of length. Sci. Am. 241(2), 158–179 (1979)CrossRefGoogle Scholar
  193. Wilson, K.G.: The renormalization group and critical phenomena. Nobel lecture, 8 December 1982 by Kenneth G. Wilson. (1982) http://www.nobelprize.org/nobel_prizes/physics/laureates/1982/wilson-lecture.pdf
  194. Wood, R., Field, P.: The distribution of cloud horizontal sizes. J. Clim. 24, 4800–4816 (2011)CrossRefGoogle Scholar
  195. Yano, J.-I., Guichard, F., Lafore, J.-P., Redelsperger, J.-L., Bechtold, P.: Renormalization approach for subgrid-scale representations. J. Atmos. Sci. 60, 2029–2038 (2003)CrossRefGoogle Scholar
  196. Yano, J.-I., Nishi, N.: The hierarchy and self-affinity of the time-variability within the tropical atmosphere inferred from the NOAA OLR data. J. Meteorol. Soc. Jpn 67, 771–789 (1989)CrossRefGoogle Scholar
  197. Yano, J.-I., Blender, R., Zhang, C., Fraedrich, K.: 1/ f—noise and pulse-like events in the tropical atmospheric surface variabilities. Q. J. Roy. Meteor. Soc. 130, 1697–1721 (2004)CrossRefGoogle Scholar
  198. Yano, J.-I., Fraedrich, K., Blender, R.: Tropical convective variability as 1/f noise. J. Climate 14, 3608–3616 (2001)CrossRefGoogle Scholar
  199. Zeng, L., Wang, G.: Modeling golden section in plants. Prog. Nat. Sci. 19, 255–260 (2009)CrossRefGoogle Scholar
  200. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, MA (1949)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Ministry of Earth Sciences, Government of IndiaRetired from IITMPuneIndia

Personalised recommendations