Skip to main content

Upper-Mantle Diamond-Parental Systems in Physico-Chemical Experiment

  • Chapter
  • First Online:
Genesis of Diamonds and Associated Phases

Part of the book series: Springer Mineralogy ((MINERAL))

  • 586 Accesses

Abstract

The criterion of syngenesis of diamonds and primary mineral inclusions presents an effective instrument in determination of chemical composition of the growth melts of diamonds and genetically associated phases. Its role is sufficiently helpful at planning the experimental investigations on melting phase relations of the diamond-produced systems. Physico-chemical experiments are currently directed towards the construction of syngenesis diagrams for diamonds and associated phases of peridotitic and eclogitic parageneses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaishi M (1996) Effect of Na2O and H2O addition to SiO2 on the synthesis of diamond from graphite. Proceedings of the 3rd NIRIM (national institute for research in inorganic materials) international symposium on advanced materials (ISAM’96). Tsukuba, Ibaraki, Japan, pp 75–80

    Google Scholar 

  • Akaishi M, Yamaoka S (2000) Crystallization of diamond from C–O–H fluids under high-pressure and high-temperature conditions. J Cryst Growth 209:999–1003. doi:10.1016/S0022-0248(99)00756-3

    Article  Google Scholar 

  • Akaishi M, Kanda H, Yamaoka S (1990) High pressure synthesis of diamond in the systems of graphite-sulfate and graphite-hydroxide. Jpn J Appl Phys 29:L1172–L1174. doi:10.1143/JJAP.29.L1172

    Article  Google Scholar 

  • Akaishi M, Shaji Kumar MD, Kanda H, Yamaoka S (2001) Reactions between carbon and a reduced C–O–H fluid under diamond-stable HPHT conditions. Diamond Relat Mater 10:2125–2130. doi:10.1016/S0925-9635(01)00490-3

    Article  Google Scholar 

  • Arima M (1996) Experimental study of growth and resorption of diamond in kimberlitic melts at high pressures and temperatures. Proceedings of the 3rd NIRIM (national institute for research in inorganic materials) international symposium on advanced materials (ISAM’96). Tsukuba, Ibaraki, Japan, pp 223–228

    Google Scholar 

  • Arima M, Nakayama K, Akaishi M et al (1993) Crystallization of diamond from silicate melt of kimberlite composition in high-pressure high-temperature experiments. Geology 21:670–968. doi:10.1130/0091-7613(1993)o21<0968:CODFAS>2.3.CO;2

    Article  Google Scholar 

  • Bobrov AV, Litvin YA (2009) Peridotite-eclogite-carbonatite systems at 7.0–8.5 GPa: concentration barrier of diamond nucleation and syngenesis of its silicate and carbonate inclusions. Rus Geol Geoph 50(12):1221–1233

    Google Scholar 

  • Bulanova GP, Spetsius ZV, Leskova NV (1990) Sulfides in diamonds and xenoliths from kimberlite pipes of Yakutia. Nauka, Novosibirsk, p 117

    Google Scholar 

  • Bulanova GP, Griffin WI, Ryan CO (1998) Nucleation environment of diamonds from Yakutian kimberlites. Min Magaz 62:409–419. doi:10.1180/002646198547675

    Article  Google Scholar 

  • Bundy FP, Hall HT, Strong HM, Wentorf RH (1955) Man-made diamonds. Nature 176:51–54. doi:10.1038/176051a0

    Article  Google Scholar 

  • Bundy FP, Basset WA, Weathers MS et al (1996) The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34:141–153

    Article  Google Scholar 

  • Efimova ES, Sobolev NV, Pospelova LN (1983) Inclusions of sulphides in diamonds and peculiarity of their paragenesis. Zapiski Vsesoyuzn Mineralogich Obschestva 92:300–309

    Google Scholar 

  • Glinnemann J, Kusaka K, Harris JW (2003) Oriented graphite single-crystal inclusions in diamond. Z Kristallogr 218(11):733–739

    Google Scholar 

  • GuO JF, Griffin WL, O’Reilly SV (1999) Geochemistry and origin of sulfide minerals in mantle xenoliths; Qilin, south-estern China. J Petro 40:1125–1149

    Article  Google Scholar 

  • Harte B (2010) Diamond formation in the deep mantle the record of mineral inclusions and their distribution in relation to mantle dehydration zone. Min Mag 74(2):180–215

    Article  Google Scholar 

  • Hong SM, Akaishi M, Yamaoka S (1999) Nucleation of diamond in the system of carbon and water under very high pressure and temperature. J Cryst Growth 200:326–332

    Article  Google Scholar 

  • Kennedy GS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 1(14):2467–2470

    Article  Google Scholar 

  • Kurat G, Dobosi G (2000) Garnet and diopside-bearing diamondites (framesites). Min Petrol 69:143–159. doi:10.1007/s007100070018

    Article  Google Scholar 

  • Litvin YA (1968) On the mechanism of diamond formation in metal-carbon systems. Izvestia Akad Nauk SSSR. Inorganic Mater 4:175–181

    Google Scholar 

  • Litvin YA (1969) To the diamond origin problem. Zapiski Vsesoyuzn Mineralogich Obschestva 98(2):114–121

    Google Scholar 

  • Litvin YA (1991) Physicochemical studies of melting in the earth’s interior. Nauka, Moscow, p 312

    Google Scholar 

  • Litvin YA (2003) Alkaline-chloride components in processes of diamond growth in the mantle and high-pressure experimental conditions. Dokl Earth Sci 389A(3):388–391

    Google Scholar 

  • Litvin YA (2007) High-pressure mineralogy of diamond genesis. In: Ohtani E (ed) Advances in high-pressure mineralogy (edited by Eiji). Geological Society of America Special Paper, vol 421, pp 83–103. doi:10.1130/2007.2421(06)

  • Litvin YA (2009) The physicochemical conditions of diamond formation in the mantle matter: experimental studies. Russ Geol Geoph 50(12):1188–1200

    Article  Google Scholar 

  • Litvin YA (2012) Physico-chemical formation conditions of natural diamond deduced from experimental study of the eclogite-carbonatite-sulfide-diamond system. Geol Ore Depos 54(6):443–457

    Article  Google Scholar 

  • Litvin YA (2013) Physico-chemical conditions of syngenesis of diamond and heterogeneous inclusions in the carbonate-silicate parental melts (experimental study). Min J 35(2):5–24

    Google Scholar 

  • Litvin YA, Butvina VG (2004) Diamond-forming media in the system eclogite-carbonatite-sulfide-carbon: experiments at 6.0–8.5 GPa. Petrology 12(4):377–382

    Google Scholar 

  • Litvin YA, Spivak AV (2003) Rapid growth of diamondite at the contact between graphite and carbonate melt: experiments at 7.5–8.5 GPa. Dokl Earth Sci 391A:888–891

    Google Scholar 

  • Litvin YA, Spivak AV (2004) Crystal growth of diamond at 5.5–8.5 GPa in carbonate-carbon melt-solutions being chemical analogues of natural diamond forming melts. Mater Sci Trans 84(3):27–34

    Google Scholar 

  • Litvin YA, Zharikov VA (1999) Primary fluid-carbonatite inclusions in diamond: experimental modeling in the system K2O–Na2O–CaO–MgO–FeO–CO2 as a diamond formation medium at 7–9 GPa. Dokl Earth Sci 367A:801–805

    Google Scholar 

  • Litvin YA, Zharikov VA (2000) Experimental modeling of diamond genesis: diamond crystallization in multicomponent carbonate-silicate melts at 5–7 GPa and 1200–1570 °C. Dokl Earth Sci 373:867–870

    Google Scholar 

  • Litvin YA, Chudinovskikh LT, Zharikov VA (1997). Experimental crystallization of diamond and graphite from alkali-carbonate melts at 7–11 GPa. Trans (Dokl) Russ Acad Sci/Earth Sci Sect 355A(6):908–911

    Google Scholar 

  • Litvin YA, Chudinovskikh LT, Zharikov VA (1998) Crystallization of diamond in the Na2Mg(CO3)2–K2Mg(CO3)2–C system at 8–10 GPa. Dokl Earth Sci 359A:464–466

    Google Scholar 

  • Litvin YA, Aldushin KA, Zharikov VA (1999a) Diamond synthesis at 8.5–9.5 GPa in the K2Ca(CO3)2–Na2Ca(CO3)2 system modeling compositions of fluid-carbonatite inclusions in kimberlitic diamonds. Dokl Earth Sci 367:529–532

    Google Scholar 

  • Litvin YA, Chudinovskikh LT, Saparin GV et al (1999b) Diamonds of new alkaline carbonate-graphite HP syntheses: SEM morphology, CCL-SEM and CL spectroscopy studies. Diamond and Relat Mater 8:267–272. doi:10.1016/S0925-9635(98)00318-5

    Article  Google Scholar 

  • Litvin YA, Jones AP, Beard AD et al (2001) Crystallization of diamond and syngenetic minerals in melts of diamondiferous carbonatites of the Chagatai Massif, Uzbekistan: experiment at 7.0 GPa. Dokl Earth Sci 381A:1066–1069

    Google Scholar 

  • Litvin YA, Butvina VG, Bobrov AV, Zharikov VA (2002) The first synthesis of diamond in sulfide-carbon systems: the role of sulfides in diamond genesis. Dokl Earth Sci 382(1):40–43

    Google Scholar 

  • Litvin YA, Spivak AV, Matveev YA (2003) Crystallization of diamond in the molten carbonate-silicate rocks of the Kokchetav metamorphic complex at 5.5–7.5 GPa. Geochem Int 11:1090–1098

    Google Scholar 

  • Litvin YA, Kurat G, Dobosi G (2005a) Experimental study of diamondite formation in carbonate-silicate melts: a model approach to natural processes. Russ Geol Geoph 46(12):1285–1299

    Google Scholar 

  • Litvin YA, Pineau F, Javoy M (2005b) Carbon isotope fractionation on diamond synthesis in carbonatite-carbon melts of natural chemistry (experiments at 6.5–7.5 GPa). In: Proceedings of 6th international symposium on applied isotope geochemistry. Prague, Czechia, p 143

    Google Scholar 

  • Litvin YA, Shushkanova AV, Zharikov VA (2005c) Immiscibility of sulfide-silicate melts in the mantle: role in the syngenesis of diamond and inclusions (based on experiments at 7.0 GPa). Dokl Earth Sci 403:719–722

    Google Scholar 

  • Litvin YA, Litvin VY, Kadik AA (2008) Experimental characterization of diamond crystallization in melts of mantle silicate-carbonate-carbon systems at 7.0–8.5 GPa. Geochem Int 46(6):531–553

    Google Scholar 

  • Litvin YA, Vasiliev PG, Bobrov AV et al (2012) Parental media of natural diamonds and primary mineral inclusions in them: evidence from physicochemical experiment. Geochem Int 50(9):726–759

    Article  Google Scholar 

  • Litvin YA, Bovkun AV, Garanin VK (2016a) Titanium minerals ant their melts in the mantle chambers of diamond-forming systems (experiments at 7–8 GPa). Geochem Intern (accepted)

    Google Scholar 

  • Litvin YA, Spivak AV, Kuzyura AV (2016b) Fundamentals of the mantle carbonatite concept of diamond genesis. Geochem Int 54(10):839–857. doi:10.1134/S0016702916100086

    Article  Google Scholar 

  • Logvinova AM, Wirth R, Fedorova EN, Sobolev NV (2008) Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insight on diamond formation. Eur J Miner 0:317–331

    Google Scholar 

  • Palyanov Y, Sokol AG, Borzdov YM et al (1999) Diamond formation from mantle carbonatite fluid. Nature 400:417–418. doi:10.1038/22678

    Article  Google Scholar 

  • Palyanov YN, Sokol AG, Borzdov YM, Khokhryakov AF (2002) Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth’s mantle: an experimental study. Lithos 60:145–159. doi:10.1016/S0024-4937(01)00079-2

    Article  Google Scholar 

  • Pearson DG, Shirey SB (1999) Isotopic dating of diamonds. In: Lambert D, Ruiz J (eds) Economic geologists special publication, SEg reviewes, vol 12, pp 143–171

    Google Scholar 

  • Sato H, Akaishi M, Yamaoka S (1999) Spontaneous nucleation of diamond in the system MgCO3–CaCO3–C at 7.7 GPa. Diamond Relat Mate 8:1900–1905. doi:10.1016/S0925-9635(99)00157-0

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771. doi:10.1016/0016-7037(94)90504-5

    Article  Google Scholar 

  • Shaji Kumar MD, Akaishi M, Yamaoka S (2000) Formation of diamond from supercritical H2O–CO2 fluid at high pressure and high temperature. J Cryst Growth 213:203–206. doi:10.1016/S0022-0248(00)00352-3

    Article  Google Scholar 

  • Shaji Kumar MD, Akaishi M, Yamaoka S (2001) Effect of fluid concentration on the formation of diamond in the CO2–H2O-graphite system under HP-HT conditions. J Cryst Growth 222:3–9. doi:10.1016/S0022-0248(00)00921-0

    Article  Google Scholar 

  • Sharygin VV, Golovin AV, Pokhilenko NP, Sobolev NV (2003) Djerfisherite in unaltered kimberlite of Udachnaya East pipe, Yakutia. Dokl Earth Sci 390:554–557

    Google Scholar 

  • Shatskii AF, Bordzov YV, Sokol AG, Palyanov YN (2002) Features of phase formation and crystallization in ultrapotasc carbonate-silicate systems with carbon. Geol Geofiz 43(10):940–950

    Google Scholar 

  • Shirey SB, Richardson SH, Harris JW (2004) Integrated model of diamond formation and craton evolution. Lithos 77:923–944

    Article  Google Scholar 

  • Shushkanova AV, Litvin Y (2005) Phase relations in diamond-forming carbonate–silicate– sulfide-systems on melting. Russ Geol Geoph 46(12):1317–1326

    Google Scholar 

  • Shushkanova AV, Litvin YA (2008) Experimental evidence for liquid immiscibility in the model system CaCO3–pyrope–pyrrhotite at 7.0 GPa: the role of carbonatite and sulfide melts in diamond genesis. Canad Min 46:991–1005

    Article  Google Scholar 

  • Sobolev NV (1977) The deep-seated inclusions in Kimberlites and the problem of the composition of the upper mantle. American Geophysical Union, Washington, p 304

    Google Scholar 

  • Sokol AG, Palyanov YN, Palyanova GA et al (2001) Diamond and graphite crystallization from C–O–H fluids under high pressure and high temperature conditions. Diamond Rela Mater 10:2131–2136

    Article  Google Scholar 

  • Spivak AV, Litvin YA, Shushkanova AV et al (2008) Diamond formation in carbonate-silicate-sulfide-carbon melts: Raman- and IR-microspectroscopy. Eur J Min 20:341–347

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds–constrains from mineral inclusions. Ore Geol Res 34:5–32

    Article  Google Scholar 

  • Taniguchi T, Dobson D, Jones AP et al (1996) Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2 Mg(CO3)2 system at high pressure of 9–10 GPa region. J Mater Res 11:2622–2632

    Article  Google Scholar 

  • Tomlinson E, Jones AP, Milledge JH (2004) High-pressure experimental growth of diamond using C–K2CO3–KCl as an analogue of Cl-bearing carbonate fluid. Lithos 77:287–294. doi:10.1016/j.lithos.2004.04.029

  • Wyllie PJ (1979) Magma and volatile components. AmMin 64(5–6):469–500

    Google Scholar 

  • Yamaoka S, Shaji Kumar MD, Akaishi M, Kanda H (2000) Reactions between carbon and water under diamond-stable high pressure and high temperature conditions. Diamond Relat Mater 9:1480–1486. doi:10.1016/S0925-9635(00)00274-0

    Article  Google Scholar 

  • Yamaoka S, Shaji Kumar MD, Kanda H, Akaishi M (2002) Crystallization of diamond from CO2 fluid at high pressure and high temperature. J Cryst Growth 234:5–8. doi:10.1016/S0022-0248(01)01678-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy A. Litvin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Litvin, Y.A. (2017). Upper-Mantle Diamond-Parental Systems in Physico-Chemical Experiment. In: Genesis of Diamonds and Associated Phases. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-319-54543-1_4

Download citation

Publish with us

Policies and ethics