Skip to main content

Quantitative Analysis of a Bioplausible Model of Misperception of Slope in the Café Wall Illusion

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Included in the following conference series:

  • 3073 Accesses

Abstract

This paper presents a model explaining tilt illusion effect in the Café Wall pattern. In this geometric illusion, we perceive horizontal edges as tilted. We explain this as the result of innate retinal/gangliar visual processing of the pattern. Our bioplausible model is based on a simple early layer using Difference of Gaussian over simple ON-center and OFF-center receptive fields, with a quantification module replacing later layers of a Deep Neural Network. The experimental results show that this bioplausible filtering technique can explain the tilt illusion of the Café Wall pattern. Our statistical analysis of tilt provides a quantitative measurement and an empirically testable prediction for the degree of tilt. This shows that the Difference of Gaussian reveals cues for perception and clues about the illusions we perceive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends\(\textregistered \) Mach. Learn. 2(1), 1–127 (2009)

    Google Scholar 

  2. Blakeslee, B., McCourt, M.E.: A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis. Res. 39(26), 4361–4377 (1999)

    Article  Google Scholar 

  3. Carandini, M.: Receptive fields and suppressive fields in the early visual system. Cogn. Neurosci. 3, 313–326 (2004)

    Google Scholar 

  4. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  MATH  Google Scholar 

  5. Earle, D.C., Maskell, S.J.: Fraser cords and reversal of the Café Wall illusion. Perception 22(4), 383–390 (1993)

    Article  Google Scholar 

  6. Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187(3), 517–552 (1966)

    Article  Google Scholar 

  7. Field, G.D., Chichilnisky, E.J.: Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007)

    Article  Google Scholar 

  8. Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2), 150–164 (2010)

    Article  Google Scholar 

  9. Gregory, R.L., Heard, P.: Border locking and the Café Wall illusion. Perception 8(4), 365–380 (1979)

    Article  Google Scholar 

  10. Grossberg, S.: The link between brain learning, attention, and consciousness. Conscious. Cogn. 8(1), 1–44 (1999)

    Article  Google Scholar 

  11. Hough, P.V.: Method and means for recognizing complex patterns (1962)

    Google Scholar 

  12. Huang, J.Y., Protti, D.A.: The impact of inhibitory mechanisms in the inner retina on spatial tuning of RGCs. Sci. Rep. 6 (2016)

    Google Scholar 

  13. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

    Article  Google Scholar 

  14. Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)

    Article  Google Scholar 

  15. Jameson, D., Hurvich, L.M.: Essay concerning color constancy. Annu. Rev. Psychol. 40(1), 1–24 (1989)

    Article  Google Scholar 

  16. Kitaoka, A., Pinna, B., Brelstaff, G.: Contrast polarities determine the direction of Café Wall tilts. Perception 33(1), 11–20 (2004)

    Article  Google Scholar 

  17. Kuffler, S.W.: Neurons in the retina: organization, inhibition and excitation problems. Cold Spring Harb. Symp. Quant. Biol. 17, 281–292 (1952). Cold Spring Harbor Laboratory Press

    Article  Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  19. Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G., Enroth-Cugell, C.: Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vis. Res. 22(9), 1173–1183 (1982)

    Article  Google Scholar 

  20. Lourens, T.: Modeling retinal high and low contrast sensitivity filters. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 61–68. Springer, Heidelberg (1995). doi:10.1007/3-540-59497-3_157

    Chapter  Google Scholar 

  21. Lv, Y., Jiang, G., Yu, M., Xu, H., Shao, F., Liu, S.: Difference of Gaussian statistical features based blind image quality assessment: a deep learning approach. In: IEEE International Conference on Image Processing (ICIP), pp. 2344–2348 (2015)

    Google Scholar 

  22. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. B: Biol. Sci. 207(1167), 187–217 (1980)

    Article  Google Scholar 

  23. Marr, D., Ullman, S.: Directional selectivity and its use in early visual processing. Proc. Roy. Soc. Lond. B: Biol. Sci. 211(1183), 151–180 (1981)

    Article  Google Scholar 

  24. Morgan, M.J., Moulden, B.: The Münsterberg figure and twisted cords. Vis. Res. 26(11), 793–800 (1986)

    Article  Google Scholar 

  25. Nematzadeh, N., Lewis, T.W., Powers, D.M.W.: Bioplausible multiscale filtering in retinal to cortical processing as a model of computer vision. In: ICAART 2015-International Conference on Agents and Artificial Intelligence. SCITEPRESS (2015)

    Google Scholar 

  26. Nematzadeh, N., Powers, D.M.W.: A quantitative analysis of tilt in the Café Wall illusion: a bioplausible model for foveal and peripheral vision. In: DICTA 2016-International Conference on Digital Image Computing: Techniques and Applications (2016)

    Google Scholar 

  27. Nematzadeh, N.: A neurophysiological model for geometric visual illusions. Ph.D. thesis, Flinders University (in preparation)

    Google Scholar 

  28. Passaglia, C.L., Enroth-Cugell, C., Troy, J.B.: Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells. J. Neurosci. 21(15), 5794–5803 (2001)

    Google Scholar 

  29. Powers, D.M.W.: Lateral interaction behaviour derived from neural packing considerations. School of Electrical Engineering and Computer Science, University of New South Wales (1983)

    Google Scholar 

  30. Ratliff, F., Knight, B., Graham, N.: On tuning and amplification by lateral inhibition. Proc. Nat. Acad. Sci. 62(3), 733–740 (1969)

    Article  Google Scholar 

  31. Robson, J.G.: Frequency domain visual processing. In: Braddick, O.J., Sleigh, A.C. (eds.) Physical and Biological Processing of Images. SSINF, vol. 11, pp. 73–87. Springer, Heidelberg (1983). doi:10.1007/978-3-642-68888-1_6

    Chapter  Google Scholar 

  32. Rodieck, R.W., Stone, J.: Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28(5), 833–849 (1965)

    Google Scholar 

  33. Romeny, B.M.: Front-End Vision and Multiscale Image Analysis: Multiscale Computer Vision Theory and Applications, Written in Mathematica. Springer Science & Business Media, Heidelberg (2008)

    Google Scholar 

  34. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  35. Von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14(2), 85–100 (1973)

    Article  Google Scholar 

  36. Westheimer, G.: Irradiation, border location, and the shifted chessboard pattern. Perception 36(4), 483–494 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

Nasim Nematzadeh was supported by an Australian Postgraduate Award (APA) scholorship for her Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasim Nematzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nematzadeh, N., Powers, D.M.W., Lewis, T. (2017). Quantitative Analysis of a Bioplausible Model of Misperception of Slope in the Café Wall Illusion. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics