Skip to main content

Approximation of N-Way Principal Component Analysis for Organ Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10118))

Abstract

We apply multilinear principal component analysis to dimension reduction and classification of human volumetric organ data, which are expressed as multiway array data. For the decomposition of multiway array data, tensor-based principal component analysis extracts multilinear structure of the data. We numerically clarify that low-pass filtering after the multidimensional discrete cosine transform efficiently approximates data dimension reduction procedure based on the tensor principal component analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maeda, K.: From the subspace methods to the mutual subspace method. In: Cipolla, R., Battiato, S., Farinella, G.M. (eds.) Computer Vision, vol. 285, pp. 135–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12848-6_5

    Chapter  Google Scholar 

  2. Lu, H., Plataniotis, K., Venetsanopoulos, A.: MPCA: multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 19, 18–39 (2008)

    Article  Google Scholar 

  3. Jiang, B., Ma, S., Zhang, S.: Tensor principal component analysis via convex optimization. Math. Program. 150, 423–457 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lu, H., Plataniotis, K., Venetsanopoulos, A.: Uncorrelated multilinear principal component analysis for unsupervised multilinear subspace learning. IEEE Trans. Neural Netw. 20, 1820–1836 (2009)

    Article  Google Scholar 

  5. Shen, H., Huang, J.Z.: Sparse principal component analysis via regularized low rank matrix approximation. J. Multivar. Anal. 99, 1015–1034 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lai, Z., Xu, Y., Chen, Q., Yang, J., Zhang, D.: Multilinear sparse principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 25, 1942–1950 (2014)

    Article  Google Scholar 

  7. Panagakis, Y., Kotropoulos, C., Arce, G.R.: Non-negative multilinear principal component analysis of auditory temporal modulations for music genre classification. IEEE Trans. Audio Speech Lang. Process. 18, 576–588 (2010)

    Article  Google Scholar 

  8. Vasilescu, M.A.O., Terzopoulos, D.: Multilinear (Tensor) ICA and dimensionality reduction. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 818–826. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74494-8_102

    Chapter  Google Scholar 

  9. Bro, R.: PARAFAC. Tutorial and applications. Chemometr. Intell. Lab. Syst. 38, 149–171 (1997)

    Article  Google Scholar 

  10. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., Le, Q.V., Ng, A.Y.: Large scale distributed deep networks. In: Proceedings of the Conference on Neural Information Processing Systems, pp. 1232–1240 (2012)

    Google Scholar 

  11. Cohen, N., Shashua, A.: Simnets: a generalization of convolutional networks. In: Proceedings NIPS Workshop on Deep Learning (2014)

    Google Scholar 

  12. Hamidi, M., Pearl, J.: Comparison of the cosine and fourier transforms of Markov-1 signals. IEEE Trans Acoust. Speech Sig. Process. 24, 428–429 (1976)

    Article  MathSciNet  Google Scholar 

  13. Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press, Brighton (1983)

    Google Scholar 

  14. Lu, H., Plataniotis, K., Venetsanopoulos, A.: A survey of multilinear subspace learning for tensor data. Pattern Recogn. 44, 1540–1551 (2011)

    Article  MATH  Google Scholar 

  15. Cichoki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations. Wiley, Hoboken (2009)

    Book  Google Scholar 

  16. Wang, Y., Gong, S.: Tensor discriminant analysis for view-based object recognition. Proc. Int. Conf. Pattern Recogn. 3, 33–36 (2006)

    Google Scholar 

  17. Tao, D., Li, X., Wu, X., Maybank, S.: Elapsed time in human gait recognition: a new approach. Proc. Int. Conf. Acoust. Speech Sig. Process. 2, II (2006). http://ieeexplore.ieee.org/document/1660308/

  18. Hua, G., Viola, P., Drucker, S.: Face recognition using discriminatively trained orthogonal rank one tensor projections. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)

    Google Scholar 

  19. Lathauwer, L., Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(\(r_1, r_2, r_n\)) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Itoh, H., Imiya, A., Sakai, T.: Low-dimensional tensor principle component analysis. Proc. Int. Conf. Comput. Anal. Images Patterns Part I 9256, 223–235 (2015)

    Article  Google Scholar 

  22. Iijima, T.: Theory of pattern recognition. Electron. Commun. Jpn. 1, 123–134 (1963)

    Google Scholar 

  23. Watanabe, S., Pakvasa, N.: Subspace method of pattern recognition. In: Proceedings of the 1st International Joint Conference of Pattern Recognition (1973)

    Google Scholar 

  24. Itoh, H., Sakai, T., Kawamoto, K., Imiya, A.: Topology-preserving dimension-reduction methods for image pattern recognition. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 195–204. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38886-6_19

    Chapter  Google Scholar 

  25. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12, 335–357 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayato Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Itoh, H., Imiya, A., Sakai, T. (2017). Approximation of N-Way Principal Component Analysis for Organ Data. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10118. Springer, Cham. https://doi.org/10.1007/978-3-319-54526-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54526-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54525-7

  • Online ISBN: 978-3-319-54526-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics