Skip to main content

Aspects of PDEs Related to Fluid Flows

  • Chapter
  • First Online:
Vector-Valued Partial Differential Equations and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2179))

  • 1502 Accesses

Abstract

In the first part of the notes we discuss the problem of long-time behavior of some infinite-dimensional Hamiltonian system from the point of view of statistical mechanics. In the second part we discuss the issue of well-posedness of the Leray-Hopf weak solutions in the energy space in the context of recent developments concerning scale-invariant solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We should exclude the completely integrable systems, for example.

  2. 2.

    This may not be the case for infinite-energy solutions which may have enough energy to fill all the available phase-space, even though it is infinite-dimensional.

  3. 3.

    In the context of this example these were drawn to the author’s attention by Jalal Shatah.

  4. 4.

    We avoid the more logical but unwieldy notation \(\mathcal{O}_{\omega _{ 0}^{(N)}}^{(N)}\).

  5. 5.

    Consider for example n = 2, m = 1 and f(x) = x 1 x 2. The reader can check that the measure δ( f(x)) is well-defined in R 2 {0}, but not in R 2 .

References

  1. R.V. Abramov, G. Kovacic, A.J. Majda, Hamiltonian structure and statistically relevant conserved quantities for the truncated Burgers-Hopf equation. Commun. Pure Appl. Math. 56 (1), 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. V.I. Arnold, B.A. Khesin, Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125 (Springer, New York, 1998)

    Google Scholar 

  3. J. Bedrossian, N. Masmoudi, Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Etudes Sci. 122, 195–300 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Benettin, A. Ponno, Time-scales to equipartition in the Fermi-Pasta-Ulam problem: finite-size effects and thermodynamic limit. J. Stat. Phys. 144 (4), 793–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Bouchet, A. Venaille, Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227–295 (2012)

    Article  MathSciNet  Google Scholar 

  6. J. Bourgain, Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society Colloquium Publications, vol. 46 (American Mathematical Society, Providence, 1999)

    Google Scholar 

  7. J. Bourgain, Problems in Hamiltonian PDE’s. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. Special Volume, Part I (Birkhäuser, Basel, 2000), pp. 32–56

    Google Scholar 

  8. A. Biryuk, On invariant measures of the 2D Euler equation. J. Stat. Phys. 122 (4), 597–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Chatterjee, Invariant measures and the soliton resolution conjecture. Commun. Pure Appl. Math. 67 (11), 1737–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Chatterjee, P. Diaconis, Fluctuations of the Bose-Einstein condensate. J. Phys. A 47 (8), 085201, 23 p. (2014)

    Google Scholar 

  11. L. Chierchia, J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211 (2), 497–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Choffrut, V. Sverak, Local structure of the set of steady-state solutions to the 2D incompressible Euler equations. Geom. Funct. Anal. 22 (1), 136–201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation. Math. Res. Lett. 9 (5–6), 659–682 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181 (1), 39–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics (New York), vol. 38 (Springer, New York, 1998)

    Google Scholar 

  16. P. Diaconis, D. Freedman, A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincar Probab. Stat. 23 (2, suppl.), 397–423 (1987)

    Google Scholar 

  17. R.S. Ellis, The Theory of Large Deviations and Applications to Statistical Mechanics. Long-Range Interacting Systems, vol. 13 (Oxford University Press, Oxford, 2010), pp. 228–277

    Google Scholar 

  18. R.S. Ellis, R. Jordan, P. Otto, B. Turkington, A statistical approach to the asymptotic behavior of a class of generalized nonlinear Schrödinger equations. Commun. Math. Phys. 244 (1), 187–208 (2004)

    Article  MATH  Google Scholar 

  19. G.L. Eyink, H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70 (3–4), 833–886 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. L.D. Faddeev, L. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987)

    Book  MATH  Google Scholar 

  21. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York, 1969)

    Google Scholar 

  22. E. Fermi, J. Pasta, S. Ulam, Studies of non linear problems, Los-Alamos internal report, Document LA-1940 (1955), in: Enrico Fermi Collected Papers, vol. II (The University of Chicago Press/Accademia Nazionale dei Lincei, Chicago/Roma, 1965), pp. 977–988

    Google Scholar 

  23. Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum Math. Pi 3, e4, 63 pp. (2015)

    Google Scholar 

  24. E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis (Springer, Berlin, 1990)

    Google Scholar 

  26. A. Izosimov, B. Khesin, Characterization of steady solutions to the 2D Euler equation, arXiv:1511.05623

    Google Scholar 

  27. H. Jia, V. Sverak, Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions. Invent. Math. 196 (1), 233–265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Jia, V. Sverak, Are the incompressible 3d Navier-Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268 (12), 3734–3766 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kato, Strong L p-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions. Math. Z. 187 (4), 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. C.E. Kenig, G. Ponce, L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation. Trans. Am. Math. Soc. 348 (8), 3323–3353 (1996)

    Article  MATH  Google Scholar 

  31. A. Kiselev, V. Sverak, Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. (2) 180 (3), 1205–1220 (2014)

    Google Scholar 

  32. R. Killip, M. Vişan, Nonlinear Schrödinger Equations at Critical Regularity. Evolution Equations. Clay Mathematics Proceedings, vol. 17 (American Mathematical Society, Providence, 2013), pp. 325–437

    Google Scholar 

  33. H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations. Adv. Math. 157 (1), 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.H. Kraichnan, Inertial ranges in two dimensional turbulence. Phys. Fluids 10 (7), 1417–1423 (1967)

    Article  Google Scholar 

  35. S.B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in Mathematics (Springer, Berlin, 1556)

    Google Scholar 

  36. O.A. Ladyzhenskaya, Example of non-uniqueness in the Hopf class of weak solutions for the Navier Stokes equations. Izv. Ross. Akad. Nauk Ser. Mat. 33 (1), 229–236 (1969)

    MATH  Google Scholar 

  37. J.L. Lebowitz, H.A. Rose, E.R. Speer, Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50 (3–4), 657–687 (1988)

    Article  MATH  Google Scholar 

  38. J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  39. B.V. Lidskij, E.I. Shulman, Periodic solutions of the equation u tt u xx + u 3 = 0. Funct. Anal. Appl. 22, 332–333 (1988)

    Google Scholar 

  40. A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, vol. 27 (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  41. A.J. Majda, X. Wang, Non-linear Dynamics and Statistical Theories for Basic Geophysical Flows (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  42. J. Marsden, A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Order in chaos (Los Alamos, N.M., 1982). Phys. D 7 (1–3), 305–323 (1983)

    Google Scholar 

  43. J. Miller, Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65 (17), 2137–2140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Mouhot, C. Villani, On Landau damping. Acta Math. 207 (1), 29–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. S.P. Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Mat. Nauk 37 (5(227)), 3–49, 248 (1982)

    Google Scholar 

  46. L. Onsager, Statistical hydrodynamics. Nuovo Cimento (9) 6 (Supplemento, 2) (Convegno Internazionale di Meccanica Statistica), 279–287 (1949)

    Google Scholar 

  47. C.W. Oseen, Sur let formules de Green généralisées qui se présentent dans l’hydrodynamique et sur quelques-unes de leus application. Acta Math. 34 (1), 205–284 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Richards, V. Sverak, O. Zeitouni, in preparation.

    Google Scholar 

  49. R. Robert, J. Sommeria, Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  50. A.I. Shnirelman, Lattice theory and flows of ideal incompressible fluid. Russ. J. Math. Phys. 1 (1), 105–114 (1993)

    MathSciNet  MATH  Google Scholar 

  51. V. Sverak, Selected Topic in Fluid Mechanics. Online course notes, http://www.math.umn.edu/~sverak/course-notes2011.pdf

  52. T. Tao’s notes on NLW well-posedness, http://www.math.ucla.edu/~tao/Dispersive/wave.html

  53. B. Turkington, Statistical equilibrium measures and coherent states in two-dimensional turbulence. Commun. Pure Appl. Math. 52 (7), 781–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  54. S.R.S. Varadhan, Online course notes on large deviations, https://www.math.nyu.edu/faculty/varadhan/LDP.html

  55. X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230 (1), 213–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. V.I. Yudovich, Non-stationary flows of an ideal incompressible fluid. Ž. Vyčisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963)

    MathSciNet  Google Scholar 

  57. V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)

    Book  MATH  Google Scholar 

  58. V. Zeitlin, Finite-mode analogs of 2D ideal hydrodynamics: coadjoint orbits and local canonical structure. Phys. D 49 (3), 353–362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Sergei Kuksin, Geordie Richards and Ofer Zeitouni for very helpful discussions. The research of was supported in part by grants DMS 1159376 and DMS 1362467 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Šverák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Šverák, V. (2017). Aspects of PDEs Related to Fluid Flows. In: Ball, J., Marcellini, P. (eds) Vector-Valued Partial Differential Equations and Applications. Lecture Notes in Mathematics(), vol 2179. Springer, Cham. https://doi.org/10.1007/978-3-319-54514-1_4

Download citation

Publish with us

Policies and ethics