Skip to main content

An Evaluation of Adaptive Biomechanical Non-Rigid Registration for Brain Glioma Resection Using Image-Guided Neurosurgery

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Interventional MRI (iMRI) has proven to be an effective tool for the visualization of brain deformation and for the optimization of the maximal safe volumetric tumor resection during Image-Guided Neurosurgery. Earlier we proposed two adaptive non-rigid registration methods between pre-operative and intra-operative MRI based on: (i) Nested Expectation Maximization (NEM) [8, 20] which implicitly compensates for tissue removal, and (ii) Geometric-based which explicitly adapts the mesh to compensate for the changes in the geometry of the brain [4, 21]. In this paper, we assess the accuracy of these methods and compare them with two widely used registration schemes: ITK’s rigid registration and ITK’s Physics-Based Non-Rigid Registration (PBNRR). The evaluation is based on registration error, for the brain deformation induced by cerebral glioma resection, and it utilizes three metrics for the error: (i) 100% Hausdorff Distance, (ii) error at specific anatomical points identified by a neurosurgeon, and (iii) visual inspection by a neurosurgeon. We conduct a retrospective study on ten patients with a malignant glioma. The evaluation shows that the geometric adaptive approach achieves the most accurate alignments compared to ITK’s PBNRR and the Nested Expectation Maximization. It significantly reduces the alignment error due to rigid registration commonly used by commercial neuronavigators, and completes a volumetric alignment, on average, in about 2.3 min on a 12-core Linux workstation, satisfying the time constraints imposed by neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Louis David N, Hiroko O, Wiestler Otmar D, Cavenee Webster K, Burger Peter C, Anne J, Scheithauer Bernd W, Paul K (2007) The 2007 WHO classification of tumors of the central nervous system. J Acta Neuropathol 114(2):97–109

    Article  Google Scholar 

  2. Evren Keles G, Chang EF, Lamborn KR, Tihan T, Chang C-J, Chang SM, Berger MS (2006) Volumetric extent of resection and residual contrast enhancement on initial surgery as predictors of outcome in adult patients with hemispheric anaplastic astrocytoma. J Neurosurg 105(1):34–40

    Article  Google Scholar 

  3. Yixun L, Chengjun Y, Fotis D, Wu J, Liangfu Z, Nikos C (2014) A nonrigid registration method for correcting brain deformation induced by tumor resection. Med Phys 41(101710)

    Google Scholar 

  4. Drakopoulos F, Chrisochoides NP (2015) Accurate and fast deformable medical image registration for brain tumor resection using image-guided neurosurgery. Comput Methods Biomech Biomed Eng Imaging Visual 4(2):112–126

    Google Scholar 

  5. Archip N, Clatz O, Whalen S, Kacher D, Fedorov A, Kot A, Chrisochoides N, Jolesz F, Golby A, Black PM, Warfield SK (2007) Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery. NeuroImage 35(2):609–624

    Article  Google Scholar 

  6. Clatz O, Delingette H, Talos IF, Golby A, Kikinis R, Jolesz F, Ayache N, Warfield S (2005) Robust non-rigid registration to capture brain shift from intraoperative mri. IEEE Trans Med Imaging 24(11):1417–1427

    Article  Google Scholar 

  7. Michael MI (2015) Computational modeling for enhancing soft tissue image guided surgery: an application in neurosurgery. Ann Biomed Eng 44(1):1–11

    Google Scholar 

  8. Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE et al (2001) Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49:75–84

    Google Scholar 

  9. Dorward NL, Olaf A, Velani B, Gerritsen FA, Harkness WFJ, Kitchen ND, Thomas DGT (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 88:656–662

    Article  Google Scholar 

  10. Mostayed A, Garlapati R, Joldes G, Wittek A, Roy A, Kikinis R, Warfield S, Miller K (2013) Biomechanical model as a registration tool for image-guided neurosurgery: evaluation against bspline registration. Ann Biomed Eng 41(11):2409–2425

    Article  Google Scholar 

  11. Wittek A, Miller K, Kikinis R, Warfield SK (2007) Patient-specific model of brain deformation: application to medical image registration. J Biomech 40(4):919–929

    Article  Google Scholar 

  12. Ferrant M, Nabavi A, Macq B, Black PM, Jolesz FA, Kikinis R, Warfield SK (2002) Serial registration of intraoperative MR images of the brain. Med Image Anal 6(4):337–359

    Article  Google Scholar 

  13. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-d intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging 20(12):1384–1397

    Article  Google Scholar 

  14. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  Google Scholar 

  15. Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman D (2008) An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput 46(11):1097–1112

    Article  Google Scholar 

  16. Horton A, Wittek A, Joldes GR, Miller K (2010) A meshless Total Lagrangian explicit dynamics algorithm for surgical simulation. Int J Num Methods Biomed Eng 26(8):977–998

    Article  MATH  Google Scholar 

  17. Miller K, Horton A, Joldes GR, Wittek A (2012) Beyond finite elements: a comprehensive, patient-specific neurosurgical simulation utilizing a meshless method. J Biomech 45(15):2698–2270

    Article  Google Scholar 

  18. Johnson H, Harris G, Williams K. 2007. Brainsfit: mutual information registrations of whole-brain 3d images, using the insight toolkit.

    Google Scholar 

  19. Liu Y, Kot A, Drakopoulos F, Yao C, Fedorov A, Enquobahrie A, Clatz O, Chrisochoides NP (2014) An itk implementation of a physics-based non-rigid registration method for brain deformation in image-guided neurosurgery. Front Neuroinfo 8:33

    Google Scholar 

  20. Yixun L, Chrisochoides N (2013) Heterogeneous biomechanical model on correcting brain deformation induced by tumor resection. In: Computational biomechanics for medicine. Springer, New York, pp 115–126

    Google Scholar 

  21. Drakopoulos F, Liu Y, Foteinos P, Chrisochoides NP (2014) Towards a real time multi-tissue adaptive physics based non-rigid registration framework for brain tumor resection. Front Neuroinfo 8:11

    Article  Google Scholar 

  22. Foteinos P, Chrisochoides N (2014) High quality real-time image-to-mesh conversion for finite element simulations. J Parallel Distrib Comput 74(2):2123–2140

    Article  Google Scholar 

  23. Commandeur F, Velut J, Acosta O (2011) A VTK algorithm for the computation of the Hausdorff distance. VTK J 839

    Google Scholar 

  24. Hastreiter P, Rezk-Salama C, Soza G, Bauer M, Greiner G, Fahlbusch R, Ganslandt O, Nimsky C (2004) Strategies for brain shift evaluation. Med Image Anal 8(4):447–464

    Article  MATH  Google Scholar 

  25. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported in part by the Modeling and Simulation Fellowship at Old Dominion University, CCF-1439079, John Simon Guggenheim Foundation, and by the Richard T. Cheng Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Chrisochoides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Drakopoulos, F., Yao, C., Liu, Y., Chrisochoides, N. (2017). An Evaluation of Adaptive Biomechanical Non-Rigid Registration for Brain Glioma Resection Using Image-Guided Neurosurgery. In: Wittek, A., Joldes, G., Nielsen, P., Doyle, B., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-54481-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54481-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54480-9

  • Online ISBN: 978-3-319-54481-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics