Evaluation of Tensor-Based Algorithms for Real-Time Bidding Optimization

  • Andrzej Szwabe
  • Paweł Misiorek
  • Michał Ciesielczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10191)


In this paper we evaluate tensor-based approaches to the Real-Time Bidding (RTB) Click-Through Rate (CTR) estimation problem. We propose two new tensor-based CTR prediction algorithms. We analyze the evaluation results collected from several papers – obtained with the use of the iPinYou contest dataset and the Area Underneath the ROC curve measure. We accompany these results with analogical results of our experiments – conducted with the use of our implementations of tensor-based algorithms and approaches based on the logistic regression. In contrast to the results of other authors, we show that biases – in particular those being low-order expectation value estimates – are at least as useful as outcomes of high-order components’ processing. Moreover, on the basis of Average Precision results, we postulate that ROC curve should not be the only characteristic used to evaluate RTB CTR estimation performance.


Big Data Context-aware recommendation Tensor decomposition Logistic regression Click-Through Rate prediction WWW Display advertising Real-Time Bidding Demand-Side Platform 



This work is supported by the Polish National Science Centre, grant DEC-2011/01/D/ST6/06788.


  1. 1.
    Bro, R., Smilde, A.K.: Centering and scaling in component analysis. J. Chemometr. 17(1), 16–33 (2003)CrossRefGoogle Scholar
  2. 2.
    Chapelle, O., Manavoglu, E., Rosales, R.: Simple and scalable response prediction for display advertising. ACM Trans. Intell. Syst. Technol. 5(4), 61:1–61:34 (2014). CrossRefGoogle Scholar
  3. 3.
    Cichocki, A.: Era of Big Data processing: a new approach via tensor networks and tensor decompositions. CoRR abs/1403.2048 (2014).
  4. 4.
    Ciesielczyk, M., Szwabe, A., Morzy, M., Misiorek, P.: Progressive random indexing: dimensionality reduction preserving local network dependencies. ACM Trans. Internet Technol. 17(2) (2017). doi: 10.1145/2996185
  5. 5.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, NY, USA, pp. 233–240 (2006).
  6. 6.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). MathSciNetCrossRefGoogle Scholar
  7. 7.
    Japkowicz, N., Stefanowski, J.: Big Data Analysis: New Algorithms for a New Society. Studies in Big Data. Springer International Publishing, Heidelberg (2015)Google Scholar
  8. 8.
    Kruczyk, M., Baltzer, N., Mieczkowski, J., Draminski, M., Koronacki, J., Komorowski, J.: Random reducts: a Monte Carlo rough set-based method for feature selection in large datasets. Fundam. Inform. 127(1–4), 273–288 (2013)Google Scholar
  9. 9.
    Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lee, K., Orten, B., Dasdan, A., Li, W.: Estimating conversion rate in display advertising from past performance data. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, NY, USA, pp. 768–776 (2012).
  11. 11.
    Liao, H., Peng, L., Liu, Z., Shen, X.: iPinYou global RTB bidding algorithm competition dataset. In: Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD 2014, NY, USA, pp. 6:1–6:6 (2014).
  12. 12.
    Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013)CrossRefGoogle Scholar
  13. 13.
    Ren, K., Zhang, W., Rong, Y., Zhang, H., Yu, Y., Wang, J.: User response learning for directly optimizing campaign performance in display advertising. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM 2016, NY, USA, pp. 679–688 (2016).
  14. 14.
    Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, NY, USA, pp. 521–530 (2007).
  15. 15.
    Shan, L., Lin, L., Sun, C., Wang, X.: Predicting ad click-through rates via feature-based fully coupled interaction tensor factorization. Electron. Commer. Res. Appl. 16, 30–42 (2016). CrossRefGoogle Scholar
  16. 16.
    Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokac, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  17. 17.
    Wang, J., Yuan, S.: Real-time bidding: a new frontier of computational advertising research. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, NY, USA, pp. 415–416 (2015).
  18. 18.
    Zhang, W., Du, T., Wang, J.: Deep learning over multi-field categorical data. In: Ferro, N., Crestani, F., Moens, M.-F., Mothe, J., Silvestri, F., Nunzio, G.M., Hauff, C., Silvello, G. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 45–57. Springer, Cham (2016). doi: 10.1007/978-3-319-30671-1_4 CrossRefGoogle Scholar
  19. 19.
    Zhang, W., Yuan, S., Wang, J.: Optimal real-time bidding for display advertising. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, NY, USA, pp. 1077–1086 (2014).
  20. 20.
    Zhang, W., Yuan, S., Wang, J.: Real-time bidding benchmarking with iPinYou dataset. CoRR abs/1407.7 (2014).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Andrzej Szwabe
    • 1
  • Paweł Misiorek
    • 1
  • Michał Ciesielczyk
    • 1
  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations