Energy for Cities: Supply, Demand and Infrastructure Investment

  • Colin J. AxonEmail author
  • Simon H. Roberts
Part of the Green Energy and Technology book series (GREEN)


Energy is essential to all activities in all regions of a country. However the density of energy use in, and our economic dependence on, cities means that it is more critical for urban areas. Nevertheless we suggest that the provision of energy for urban areas cannot be considered separately from the national context. We will demonstrate how to assess the ability of a nation to invest in energy infrastructure for the benefit of cities. Our approach exploits data sets which are available in most industrialised countries, and we select two quite different case studies to illustrate our method: the Colombia (Bogota) and UK (London). Our focus for energy sustainability in cities is quality of life and reduced fossil-fuel emissions. We will show that the main target for cities should be to improve air quality and reduce energy demand by improving energy efficiency.



We are grateful to Luis Giovanetti and Humberto Mora for their help with the Colombian data and the specific context of Bogota. We are grateful too for graphical design by Elisa Magnini, and to Stephen Cook and Jake Hacker for helpful discussions.


  1. Ayres RU, Warr B (2009) The economic growth engine: how energy and work drive material prosperity. Edward Elgar, Cheltenham, UKCrossRefGoogle Scholar
  2. Banco de la República (2016) Gross domestic product methodology: base year 1994. Banco de la República, BogotaGoogle Scholar
  3. Barrera-Hernandez L (2004) The Andes: so much energy, such little security. In: Barton B, Redgwell C, Ronne A, Zillman DN (eds) Energy security: managing risk in a dynamic legal and regulatory environment. Oxford University Press, Oxford, pp 217–251CrossRefGoogle Scholar
  4. Bishop JDK, Axon CJ, Bonilla D, Banister D (2016) Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services. Energy 94:715–727. doi: 10.1016/ CrossRefGoogle Scholar
  5. Buehn A, Farzanegan MR (2013) Hold your breath: a new index of air pollution. Energy Econ 37:104–113. doi: 10.1016/j.eneco.2013.01.011 CrossRefGoogle Scholar
  6. Choobineh M, Tabares-Velasco PC, Mohagheghi S (2016) Optimal energy management of a distribution network during the course of a heat wave. Electr Power Syst Res 130:230–240. doi: 10.1016/j.epsr.2015.09.010 CrossRefGoogle Scholar
  7. CIBSE (2014) Design summer years for London. The Chartered Institution of Building Services Engineers, LondonGoogle Scholar
  8. DANE (2011) Population series 1985–2020. Departamento Administrativo Nacional de Estadstica, BogotaGoogle Scholar
  9. DANE (2013) Cuentas económicas nacionales trimestrales—PIB [Quarterly national economic accounts—GDP]. Departamento Administrativo Nacional de Estadstica, BogotaGoogle Scholar
  10. DANE (2015) Gran Encuesta Integrada de Hogares 2001–2016 [Integrated household survey] (No. COL-DANE-GEIH-2015). Departamento Administrativo Nacional de Estadstica, Bogota, ColombiaGoogle Scholar
  11. DANE (2016a) Cuentas anuales de bienes y servicios—Colombia Producto Interno Bruto (PIB) 2013 definitivo y 2014 provisional [Annual accounts of goods and services—Colombia Gross Domestic Product (GDP) 2013 final and 2014 provisional] (No. DIE-020-PD-01-r5_v6). Departamento Administrativo Nacional de Estadstica, Bogota, ColombiaGoogle Scholar
  12. DANE (2016b) Encuesta Nacional de Calidad de Vida [National Quality of Life Survey]. Departamento Administrativo Nacional de Estadstica, Bogota, ColombiaGoogle Scholar
  13. DCLG (2012) Household projections. Department for Communities and Local Government, London, UKGoogle Scholar
  14. DCLG (2015a) Dwelling stock (including vacants). Department for Communities and Local Government, London, UKGoogle Scholar
  15. DCLG (2015b) English housing survey: stock profile. Department for Communities and Local Government, London, UKGoogle Scholar
  16. DfT (2015) Transport statistics for Great Britain. Department for Transport, London, UKGoogle Scholar
  17. Erickson P, Tempest K (2014) Advancing climate ambition: how city-scale actions can contribute to global climate goals (No. 2014-06), SEI working paper. Stockholm Environment Institute, Stockholm, SwedenGoogle Scholar
  18. Fuller GW, Tremper AH, Baker TD, Yttri KE, Butterfield D (2014) Contribution of wood burning to PM10 in London. Atmos Environ 87:87–94. doi: 10.1016/j.atmosenv.2013.12.037 CrossRefGoogle Scholar
  19. Grubler A et al (2012) Urban energy systems. In: GEA Writing Team (ed) Global energy assessment. Cambridge University Press, CambridgeGoogle Scholar
  20. Hawkins TR, Gausen OM, Stromman AH (2012) Environmental impacts of hybrid and electric vehicles—a review. Int J Life Cycle Assess 17:997–1014. doi: 10.1007/s11367-012-0440-9 CrossRefGoogle Scholar
  21. Hawkins TR, Singh B, Majeau-Bettez G, Stromman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17:53–64. doi: 10.1111/j.1530-9290.2012.00532.x CrossRefGoogle Scholar
  22. Hemsath TL (2016) Housing orientation’s effect on energy use in suburban developments. Energy Build 122:98–106. doi: 10.1016/j.enbuild.2016.04.018 CrossRefGoogle Scholar
  23. Hicks R, Menne B (2015) Planning for heat events at the intraseasonal-to-seasonal scale. In: McGregor GR, Bessemoulin P, Ebi KL, Menne B (eds) Heatwaves and health: guidance on warning-system development. World Meteorological Organization and World Health Organization, Geneva, p 114Google Scholar
  24. Hirano Y, Fujita T (2012) Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy 37:371–383. doi: 10.1016/ CrossRefGoogle Scholar
  25. IEA (2015) Energy balances of non-OECD countries, 2015th edn. International Energy Agency, Paris, FranceGoogle Scholar
  26. IEA, United Nations (2013) modernising building energy codes, policy pathway. International Energy Agency, ParisGoogle Scholar
  27. Jendritzky G, Kalkstein L (2015) Assessment of heat stress. In: McGregor GR, Bessemoulin P, Ebi KL, Menne B (eds) Heatwaves and health: guidance on warning-system development. World Meteorological Organization and World Health Organization, Geneva, p 114Google Scholar
  28. Kander A, Malanima P, Warde P (2014) Power to the people: energy in Europe over the last five centuries. Princeton University Press, PrincetonCrossRefGoogle Scholar
  29. Keuken MP, Moerman M, Voogt M, Blom M, Weijers EP, Rockmann T, Dusek U (2013) Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmos Environ 71:26–35. doi: 10.1016/j.atmosenv.2013.01.032 CrossRefGoogle Scholar
  30. Kolokotroni M, Giridharan R (2008) Urban heat island intensity in London: an investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol Energy 82:986–998. doi: 10.1016/j.solener.2008.05.004 CrossRefGoogle Scholar
  31. Kolokotroni M, Ren X, Davies M, Mavrogianni A (2012) London’s urban heat island: impact on current and future energy consumption in office buildings. Energy Build 47:302–311. doi: 10.1016/j.enbuild.2011.12.019 CrossRefGoogle Scholar
  32. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55. doi: 10.1146/annurev.publhealth.29.020907.090843 CrossRefGoogle Scholar
  33. Mavrogianni A, Davies M, Batty M, Belcher SE, Bohnenstengel SI et al (2011) The comfort, energy and health implications of London’s urban heat island. Build Serv Eng Res Technol 32:35–52. doi: 10.1177/0143624410394530 CrossRefGoogle Scholar
  34. MME (2016) Sistema de Informacion de Petroleo y Gas Colombiano: Balance Minero Energético. Ministry of Mines and Energy, BogotaGoogle Scholar
  35. ONS (2014) Published ad hoc data and analysis: population, requests during September 2014. Office for National Statistics, NewportGoogle Scholar
  36. ONS (2015) United Kingdom National Accounts, The Blue Book, 2015th edn. Office for National Statistics, NewportGoogle Scholar
  37. ONS (2016) JOBS02: Workforce jobs by industry. Office for National Statistics, NewportGoogle Scholar
  38. Ries FJ, Marshall JD, Brauer M (2009) Intake fraction of urban wood smoke. Environ Sci Technol 43:4701–4706. doi: 10.1021/es803127d CrossRefGoogle Scholar
  39. Roberts SH, Axon CJ, Foran BD, Goddard NH, Warr BS (2015) A framework for characterising an economy by its energy and socio-economic activities. Sust Cities Soc 14:99–113. doi: 10.1016/j.scs.2014.08.004 CrossRefGoogle Scholar
  40. Roberts SH, Axon CJ, Goddard NH, Foran BD, Warr BS (2016) A robust data-driven macro-socioeconomic-energy model. Sustain Prod Consum 7:16–36. doi: 10.1016/j.spc.2016.01.003 CrossRefGoogle Scholar
  41. Salagnac J-L (2007) Lessons from the 2003 heat wave: a French perspective. Build Res Inf 35:450–457. doi: 10.1080/09613210601056554 CrossRefGoogle Scholar
  42. Schultz N, Grubler A, Ichinose T (2013) Energy and air pollution densities, including heat island effects. In: Grubler A, Fisk D (eds) Energizing sustainable cities: assessing urban energy. Routledge, AbingdonGoogle Scholar
  43. Smith TW, Axon CJ, Darton RC (2013) The impact on human health of car-related air pollution in the UK, 1995–2005. Atmos Environ 77:260–266. doi: 10.1016/j.atmosenv.2013.05.016 CrossRefGoogle Scholar
  44. United Nations, European Commission, International Monetary Fund, Organisation for Economic Co-operation and Development, World Bank (eds) (2009) System of national accounts 2008. United Nations, New York, USAGoogle Scholar
  45. Webb J (2015) Urban energy governance for sustainable heat in UK cities: expectations, practices and potential. In: Hawkey D, Webb J, Lovell H, McCrone D, Tingey M, Winskel M (eds) Sustainable urban energy policy: heat and the city. Routledge, LondonGoogle Scholar
  46. WHO (2016) Health risk assessment of air pollution: general principles. WHO Regional Office for Europe, CopenhagenGoogle Scholar
  47. Wrigley EA (2010) Energy and the English industrial revolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Energy FuturesBrunel UniversityLondonUK
  2. 2.ArupLondonUK

Personalised recommendations