Advertisement

Overview of Smart White Canes: Connected Smart Cane from Front End to Back End

  • Gianmario MottaEmail author
  • Tianyi Ma
  • Kaixu Liu
  • Edwige Pissaloux
  • Muhammad Yusro
  • Kalamullah Ramli
  • Jean Connier
  • Philippe Vaslin
  • Jian-jin Li
  • Christophe de Vaulx
  • Hongling Shi
  • Xunxing Diao
  • Kun-Mean Hou
Chapter

Abstract

There are 285 million visually impaired people (VIP) worldwide, among whom 39 million are blind (WHO 2014).

Keywords

Indoor mobility Outdoor mobility Augmented reality Multi-data streaming Location-based services (LBS) Positioning Path planning En-route assistance Event awareness Intelligent cane Visually impaired people Guide objects Portable device SEES ETA VIP eETA Smart stick Active multisensory context-awareness Sensory data fusion Asymmetry ON/OFF multi-core architecture Indoor navigation 

References

  1. 1.
    WHO (2014) Visual impairment and blindess. http://www.who.int/mediacentre/factsheets/fs282/en/. Accessed 13 April 2017
  2. 2.
    Manduchi R, Kurniawan S (2011) Mobility-related accidents experienced by people with visual impairment. AER J Res Pract Vis Impairment and Blindness 4(2):44–54Google Scholar
  3. 3.
    Wiener W, Welsch R, Blasch B (eds) (2010) Foundation of orientation and mobility, volume I: history and theory. American Foundation for the Blind, New YorkGoogle Scholar
  4. 4.
    Thinus-Blanc C, Gaunet F (1997) Representation of space in blind persons: vision as a spatial sense? Psychol Bull 121:20–42. doi: 10.1037/0033-2909.121.1.20 CrossRefGoogle Scholar
  5. 5.
    Lévesque (2008) Blindness, Technology and Haptics. Survey, Haptics Laboratory, Centre for Intelligent Machines, McGill University, Montreal, Québec, CanadaGoogle Scholar
  6. 6.
    Lahav O, Mioduser D (2003) A blind person’s cognitive mapping of new spaces using a haptic virtual environment. J Res Spec Educ Needs 3:172–177. doi: 10.1111/1471-3802.00012 CrossRefGoogle Scholar
  7. 7.
    Briscoe R, Grush R (2015) Action-based theories of perception. In: Stanford encyclopedia philosophy, pp 1–66Google Scholar
  8. 8.
    Foulke E (1982) Perception, cognition and the mobility of blind pedestrians. In: Potegal M (ed) Spatial Abilities: Development and physiological foundations, Academic Press, San Diego, CA, USA, pp 55-76Google Scholar
  9. 9.
    Loomis JM, Klatzky RL, Golledge RG, Cicinelli JG, Pellegrino JW, Fry PA (1993) Nonvisual navigation by blind and sighted: assessment of path integration ability. J Exp Psychol Gen 122:73–91. doi: 10.1037/0096-3445.122.1.73 CrossRefGoogle Scholar
  10. 10.
    Noordzij ML, Zuidhoek S, Postma A (2006) The influence of visual experience on the ability to form spatial mental models based on route and survey descriptions. Cognition 100:321–342. doi: 10.1016/j.cognition.2005.05.006 CrossRefGoogle Scholar
  11. 11.
    Rieser JJ, Lockman JJ, Pick HL (1980) The role of visual experience in knowledge of spatial layout. Percept Psychophys 28:185–190. doi: 10.3758/BF03204374 CrossRefGoogle Scholar
  12. 12.
    Gaunet F, Gentaz E (2009) Effect of visual experience on haptic estimations of spatial locations. L’année psychologique 109:237–252CrossRefGoogle Scholar
  13. 13.
    Rieser JJ, Guth DA, Hill EW (1986) Sensitivity to perspective structure while walking without vision. Perception 15:173–188Google Scholar
  14. 14.
    Hatwell Y (2003) Le développement perceptivo-moteur de l’enfant aveugle. Enfance 55:88–94CrossRefGoogle Scholar
  15. 15.
    Wirth KE, Rein DB (2008) The economic costs and benefits of dog guides for the blind. Ophthalmic Epidemiol 15:92–98. doi: 10.1080/09286580801939353 CrossRefGoogle Scholar
  16. 16.
    Li K (2015) Electronic travel aids for blind guidance. Presentation, University of California BerkeleyGoogle Scholar
  17. 17.
    Murata (2008) Ultrasonic sensor application guide. 17Google Scholar
  18. 18.
    Russell L (1965) Travel path sounder. In: Proceedings of the rotterdam mobility research conference, American Foundation for the Blind, New YorkGoogle Scholar
  19. 19.
    Kay L (1964) An ultrasonic sensing probe as a mobility aid for the blind. Ultrasonics 2(2):53–59Google Scholar
  20. 20.
    GDP Research (2005) The miniguide mobility aid. http://www.gdp-research.com.au/minig_1.htm. Accessed 13 Sept 2016
  21. 21.
    Pressey N (1977) Mowat sensor. Focus 11(3):35–39Google Scholar
  22. 22.
    Benet G, Blanes F, Simó JE, Pérez P (2002) Using infrared sensors for distance measurement in mobile robots. Robot Auton Syst 40:255–266. doi: 10.1016/S0921-8890(02)00271-3 CrossRefGoogle Scholar
  23. 23.
    Farcy R, Leroux R, Jucha A, Damaschini R, Grégoire C, Zogaghi A (2006) Electronic travel aids and electronic orientation aids for blind people: technical, rehabilitation and everyday life points of view. In: Hersh MA (ed) Conference & workshop on assistive technologies for people with vision & hearing impairments, Kufstein, Austria, 17–21 July 2006Google Scholar
  24. 24.
    Foerster K-T, Gross A, Hail N, Uitto J, Wattenhofer R (2014) SpareEye: enhancing the safety of inattentionally blind smartphone users. In: Proceedings of the 13th international conference on mobile and ubiquitous multimedia, CM, New York, NY, USA, pp 68–72Google Scholar
  25. 25.
    Karthick M, Suguna R (2015) Obstacle detection for visually impaired people using smart phones. Int J Emerg Technol Comput Sci Electron 13(1):530–535Google Scholar
  26. 26.
    Tapu R, Mocanu B, Bursuc A, Zaharia T (2013) A smartphone-based obstacle detection and classification system for assisting visually impaired people. In: 2013 IEEE international conference on computer vision workshop, pp 444–451Google Scholar
  27. 27.
    Yusro M, Hou KM, Pissaloux E, Shi HL, Ramli K, Sudiana D (2013) SEES: concept and design of a smart environment explorer stick. In: 2013 6th international conference on human system interaction HSI, pp 70–77Google Scholar
  28. 28.
    Lin XM, Connier J, Vaslin P, Guo CC, Zang TY, Li JJ, De Vaulx C, Hou KM (2015) Indoor navigation with the Smart Environment Explorer Stick (SEES). Paper presented at the 2015 new information communication sciences and technology workshop (NICST 2015), IMS, Bordeaux, France, 8–9 Sept 2015Google Scholar
  29. 29.
    Shoval S, Borenstein J, Koren Y (1993) The navbelt—a computerized travel aid for the blind. In: Proceedings of the RESNA ’93 conference, Las Vegas, Nevada, 12–17 June 1993Google Scholar
  30. 30.
    Ulrich I, Borenstein J (2001) The GuideCane–applying mobile robot technologies to assist the visually impaired. IEEE Trans Syst Man Cybern Part Syst Hum 31:131–136. doi: 10.1109/3468.911370 CrossRefGoogle Scholar
  31. 31.
    Mhajeri N, Raste R, Daneshvar S (2011) An obstacle detection system for blind People. In: Proceedings of the world congress on engineering 2011 vol II, London, U.K., 6–8 July 2011Google Scholar
  32. 32.
    Molton N, Se S, Brady JM, Lee D, Probert P (1998) A stereo vision-based aid for the visually impaired. Image Vis Comput 16:251–263. doi: 10.1016/S0262-8856(97)00087-5 CrossRefGoogle Scholar
  33. 33.
    Sharma PS, Chitaliya NG (2015) Obstacle avoidance using stereo vision: a survey. Int J Innovative Res Comput Commun Eng 3(1):24–29CrossRefGoogle Scholar
  34. 34.
    Lazaros N, Sirakoulis GC, Gasteratos A (2008) Review of stereo vision algorithms: from software to hardware. Int J Optomechatronics 2:435–462. doi: 10.1080/15599610802438680 CrossRefGoogle Scholar
  35. 35.
    Yusro M, Hou K-M, Pissaloux E, Ramli K, Sudiana D, Zhang L-Z, Shi H-L (2014) Concept and design of SEES (Smart Environment Explorer Stick) for visually impaired person mobility assistance. Hum Comput Syst Interact Backgrounds Appl 300(3):245–259Google Scholar
  36. 36.
    LIDAR: https://en.wikipedia.org/wiki/Lidar. Accessed 8 Aug 2016
  37. 37.
    Aguerrevere D, Choudhury M, Barreto A (2004) Portable 3D sound/soar navigation system for blind individuals. In: Second LACCEI international Latin American and Caribbean conference for engineering and technologyGoogle Scholar
  38. 38.
    Parseihian G, Brilhault A, Dramas F (2010) Navig: an object localization system for the blind. In: Workshop pervasive 2010: multimodal location based techniques for extreme navigation, HelsinkiGoogle Scholar
  39. 39.
    Filipe V, Fernandes F, Fernandes H, Sousa A, Paredes H, Barroso J (2012) Blind navigation support system based on microsoft kinect. Procedia Comput Sci 14:94–101. doi: 10.1016/j.procs.2012.10.011 CrossRefGoogle Scholar
  40. 40.
    European Commission (2010) Intelligent transport systems. Directorate-General for Research, Publications Office of the European Union, Luxembourg, 28 pGoogle Scholar
  41. 41.
    Wu H, Siegel M, Khosla P (1998) Vehicle sound signature recognition by frequency vector principal component analysis. In: Proceedings of IEEE instrumentation and measurement technology conference, 1998. IMTC 98, vol 1. pp 429–434Google Scholar
  42. 42.
    Lymberopoulos D, Liu J, Yang X, Choudhury RR, Handziski V, Sen S (2015) A realistic evaluation and comparison of indoor location technologies: experiences and lessons learned. In: Proceedings of the 14th international conference on information processing in sensor networks. ACM, Seattle, Washington, pp 178–189Google Scholar
  43. 43.
    Terrier P, Turner V, Schutz Y (2005) GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum Mov Sci 24:97–115. doi: 10.1016/j.humov.2005.03.002 CrossRefGoogle Scholar
  44. 44.
    Beder C, Klepal M (2012) Fingerprinting based localisation revisited: a rigorous approach for comparing RSSI measurements coping with missed access points and differing antenna attenuations. In: 2012 international conference on indoor positioning and indoor navigation (IPIN), pp 1–7Google Scholar
  45. 45.
    Li L, Hu P, Peng C, Shen G, Zhao F (2014) Epsilon: a visible light based positioning system. In: Proceedings of 11th USENIX conference on networked systems design and implementation, USENIX Association, Seattle, WA, pp 331–343Google Scholar
  46. 46.
    Riehle TH, Anderson SM, Lichter PA, Condon JP, Sheikh SI, Hedin DS (2011) Indoor waypoint navigation via magnetic anomalies. In: Annual international conference of the IEEE engineering in medicine and biology society EMBC 2011, pp 5315–5318Google Scholar
  47. 47.
    Sabatini AM (2005) Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med Biol Eng Comput 43:94–101CrossRefGoogle Scholar
  48. 48.
    de Saint Rémy N, Vaslin P, Dabonneville M, Roux D, Hou KM, Cid M (2003) Can the distance run by a wheelchair be calculated from the measurements of a 3-D accelerometer? Actes du XXVIIIème Congrès de la Société de Biomécanique, Poitiers, 11–12 Sept, Arch Physiol Biochem 111(suppl.):99Google Scholar
  49. 49.
    Vaslin P, Dabonneville M (2000) Use of a 3D accelerometer for kinetic analysis of wheelchair propulsion. In: Proceedings of the 12th conference of the european society of biomechanics, Trinity College, Dublin (Ireland), 28–30 Aug, p 345Google Scholar
  50. 50.
    Faroux JP, Renault J (1996) Mécanique 1: point et systèmes de points (1ère année MPSI – PCSI). Dunod [Collection J’intègre – Prépas scientifiques], 4ème édition, Paris, 372 pGoogle Scholar
  51. 51.
    Grossetête C, Olive P (1999) Mécanique des systèmes et du solide – Cours et exercices corrigés (2ème année MP – MP* – PT – PT*), Ellipses/Édition Marketing S.A. [Collection Taupe-Niveau – Classes préparatoires aux Grandes Écoles Scientifiques], Paris, 312 pGoogle Scholar
  52. 52.
    Radix JC (1978) Gyroscopes et gyromètres. Sup’ Aéro: École Nationale Supérieure de l’Aéronautique et de l’Espace, Toulouse: Cépaduès Éditions, 390 pGoogle Scholar
  53. 53.
    Animazoo Uk Ltd (2006) Quayside offices. Basin Road South, Brighton, East Sussex, BN41 1WF. http://www.animazoo.com/contact/. Accessed 15 Sept 2016
  54. 54.
    Cutti AG, Giovanardi A (2008) Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput 46:169–178CrossRefGoogle Scholar
  55. 55.
    Cutti AG, Ferrari A (2010) ‘Outwalk’: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48:17–25CrossRefGoogle Scholar
  56. 56.
    Ferrari A, Cutti AG, Garofalo P, Raggi M, Heijboer M, Cappello A, Davalli A (2010) First in vivo assessment of ‘‘Outwalk’’: a novel protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput 48:1–15CrossRefGoogle Scholar
  57. 57.
    Luinge HJ, Veltink PH (2005) Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med Biol Eng Comput 43(2):273–282CrossRefGoogle Scholar
  58. 58.
    Luinge HJ, Veltink PH, Baten CTM (2007) Ambulatory measurement of arm orientation. J Biomech 40(1):78–85CrossRefGoogle Scholar
  59. 59.
    Picerno P, Cereatti A, Cappozzo A (2008) Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture 28(4):588–595CrossRefGoogle Scholar
  60. 60.
    Picerno P, Cereatti A, Cappozzo A (2011) A spot check for assessing static orientation consistency of inertial and magnetic sensing units. Gait Posture 33:373–378CrossRefGoogle Scholar
  61. 61.
    deVries WHK, Veeger HEJ, Cutti AG, Baten C, Van der Helm FCT (2010) Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J Biomech 43:1983–1988CrossRefGoogle Scholar
  62. 62.
    Williamson R, Andrews BJ (2001) Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Med Biol Eng Compu 39:1–9CrossRefGoogle Scholar
  63. 63.
    Xsens Technologies (2009) Pros and cons of inertial sensing for human motion analysis. 2 Nov 2009. Webinar Xsens. http://download.xsens.com/XsensProsCons20091105.wmv. PowerPoint presentation. http://download.xsens.com/XsensProsConsInertialSensing20091105.pdf
  64. 64.
    Naqvib NZ, Kumar A, Chauhan A, Sahni K (2012) Step counting using smartphone-based accelerometer. Int J Comput Sci Eng 4:675Google Scholar
  65. 65.
    Zheng X, Yang H, Tang W, Pu S, Zheng L, Zheng H, Liao B, Wang J (2014) Indoor pedestrian navigation with shoe-mounted inertial sensors. In: Park JJJH, Chen S-C, Gil J-M, Yen YN (eds) Multimedia and ubiquitous engineering, Springer, Berlin, pp 67–73Google Scholar
  66. 66.
    Gaunet F, Briffault X (2005) Exploring the functional specifications of a localized wayfinding verbal aid for blind pedestrians: simple and structured urban areas. Hum Comput Interact 20:267–314. doi: 10.1207/s15327051hci2003_2 CrossRefGoogle Scholar
  67. 67.
    Matthews B, Hibberd D, Carsten O (2014) Road and street crossings for blind and partially sighted people: the importance of being certain. Institute for Transport Studies, University of LeedsGoogle Scholar
  68. 68.
    Wang S, Tian Y (2012) Detecting stairs and pedestrian crosswalks for the blind by RGBD camera. In: 2012 IEEE international conference on bioinformatics and biomedicine workshops (BIBMW), pp 732–739Google Scholar
  69. 69.
    Ivanchenko V, Coughlan J, Shen H (2008) Detecting and locating crosswalks using a camera phone. In: Proceedings of CVPR IEEE computer society conference on computer vision and pattern recognition 2008:4563143. doi: 10.1109/CVPRW.2008.4563143
  70. 70.
    Ivanchenko V, Coughlan J, Shen H (2009) Staying in the crosswalk: a system for guiding visually impaired pedestrians at traffic intersections. Assist Technol Res Ser 25:69–73. doi: 10.3233/978-1-60750-042-1-69 Google Scholar
  71. 71.
    Wang S, Tian Y (2011) Indoor signage detection based on saliency map and bipartite graph matching. In: 2011 IEEE international conference on bioinformatics and biomedicine workshops (BIBMW), pp 518–525Google Scholar
  72. 72.
    Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29(7):1645–1660CrossRefGoogle Scholar
  73. 73.
    Tian Y, Yang X, Arditi A (2010) Computer vision-based door detection for accessibility of unfamiliar environments to blind persons. In: Miesenberger K, Klaus J, Zagler W, Karshmer A (eds) Computers helping people with special needs. Springer, Berlin, pp 263–270Google Scholar
  74. 74.
    Yi C, Flores RW, Chincha R, Tian Y (2013) Finding objects for assisting blind people. Netw Model Anal Health Inform Bioinforma 2:71–79. doi: 10.1007/s13721-013-0026-x CrossRefGoogle Scholar
  75. 75.
    Jung K, In Kim K, Jain KA (2004) Text information extraction in images and video: a survey. Pattern Recognit 37:977–997. doi: 10.1016/j.patcog.2003.10.012 CrossRefGoogle Scholar
  76. 76.
    Yi C, Tian Y (2014) Scene text recognition in mobile applications by character descriptor and structure configuration. IEEE Trans Image Process 23:2972–2982. doi: 10.1109/TIP.2014.2317980 MathSciNetCrossRefGoogle Scholar
  77. 77.
    Buckley JJ, Siler W, Tucker D (1986) A fuzzy expert system. Fuzzy Sets Syst 20:1–16. doi: 10.1016/S0165-0114(86)80027-6 CrossRefGoogle Scholar
  78. 78.
    Fasel B, Luettin J (2003) Automatic facial expression analysis: a survey. Pattern Recognit 36:259–275. doi: 10.1016/S0031-3203(02)00052-3 CrossRefzbMATHGoogle Scholar
  79. 79.
    Martinez F, Carbone A, Pissaloux E (2013) Combining first-person and third‐person gaze for attention recognition. In: 10th IEEE conference on automatic face and gesture recognition, ShanghaiGoogle Scholar
  80. 80.
    Yang M, Yu K (2011) Real-time clothing recognition in surveillance videos. In: 2011 18th IEEE international conference on image processing ICIP, pp 2937–2940Google Scholar
  81. 81.
    Kotus J, Lopatka K, Czyzewski A (2012) Detection and localization of selected acoustic events in acoustic field for smart surveillance applications. Multimed Tools Appl 68:5–21. doi: 10.1007/s11042-012-1183-0 CrossRefGoogle Scholar
  82. 82.
    Schwarz LA, Mkhitaryan A, Mateus D, Navab N (2011) Estimating human 3D pose from time-of-flight images based on geodesic distances and optical flow. In: 2011 IEEE international conference on automatic face & gesture recognition, Workshop FG 2011, pp 700–706Google Scholar
  83. 83.
    Randell B, Avizienis A (2001) Fundamental concepts of dependability. LAAS-CNRSGoogle Scholar
  84. 84.
    Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38:393–422. doi: 10.1016/S1389-1286(01)00302-4 CrossRefGoogle Scholar
  85. 85.
    Akyildiz IF, Melodia T, Chowdhury KR (2008) Wireless multimedia sensor networks: applications and testbeds. Proc IEEE 96:1588–1605. doi: 10.1109/JPROC.2008.928756 CrossRefGoogle Scholar
  86. 86.
    Hamdi M, Boudriga N, Obaidat MS (2008) Bandwidth-effective design of a satellite-based hybrid wireless sensor network for mobile target detection and tracking. IEEE Syst J 2:74–82. doi: 10.1109/JSYST.2007.916049 CrossRefGoogle Scholar
  87. 87.
    Munir A, Gordon-Ross A, Ranka S (2015) Modeling and optimization of parallel and distributed embedded systems. Wiley, USAGoogle Scholar
  88. 88.
    Munir A, Gordon-Ross A, Ranka S (2014) Multi-core embedded wireless sensor networks: architecture and applications. IEEE Trans Parallel Distrib Syst 25:1553–1562. doi: 10.1109/TPDS.2013.219 CrossRefGoogle Scholar
  89. 89.
    Shi HL, Hou KM, Zhou HY, Liu X (2011) Energy efficient and fault tolerant multicore wireless sensor network: E2MWSN. In: 2011 7th international conference on wireless communications, networking and mobile computing WiCOM, pp 1–4Google Scholar
  90. 90.
    Shi H-L, Hou K-M, Diao X, Xing L, De Vaulx C (2013) A robust multi-core multi-support and modular wireless multimedia sensor network: MiLive. ECOTECHS’2013, Montoldre, France, 9–10 Oct 2013Google Scholar
  91. 91.
    Kleihorst R, Schueler B, Danilin A, Heijligers M (2006) Smart camera mote with high performance vision system. In: Workshop on distributed smart cameras (DSC), Boulder, Colorado, Oct 2006Google Scholar
  92. 92.
    Rasberry Pi Foundation (2016) Raspberry Pi 1 model B. http://www.raspberry.org/products/model-b/. Accessed 18 Mar 2016
  93. 93.
    SMIR Group LIMOS UMR 6158 CNRS Blaise Pascal University (2016) iLive platform introduction. http://edss.isima.fr/auth/home.php, 2016. Accessed 18 Mar 2016
  94. 94.
    Duffy C, Roedig U, Herbert J, Sreenan C (2008) A comprehensive experimental comparison of event driven and multi-threaded sensor node operating systems. J Netw. doi: 10.4304/jnw.3.3.57-70 Google Scholar
  95. 95.
    Bhatti S, Carlson J, Dai H, Deng J, Rose J, Sheth A, Shucker B, Gruenwald C, Torgerson A, Han R (2005) MANTIS OS: an embedded multithreaded operating system for wireless micro sensor platforms. Mob Netw Appl 10:563–579CrossRefGoogle Scholar
  96. 96.
    De Vaulx C, Hou K-M (2002) DREAM: un micro noyau temps réel orienté pour la tolérance aux fautes. Informatique et Santé 13:63–69Google Scholar
  97. 97.
    Zhou H, Hou KM, De Vaulx C (2006) SDREAM : a super-small distributed real-time microkernel dedicated to wireless sensors. JPCC Spec Issue Key Technol Appl Wirel Sens Body-Area Netw 12 pGoogle Scholar
  98. 98.
    Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K (2000) System architecture directions for networked sensors. In: Proceedings of ninth international conference on architectural support for programming languages and operating systems, ACM, New York, NY, USA, pp 93–104Google Scholar
  99. 99.
    Dunkels A, Gronvall B, Voigt T (2004) Contiki—a lightweight and flexible operating system for tiny networked sensors. In: 29th annual IEEE international conference on local computer networks 2004, pp 455–462Google Scholar
  100. 100.
    Han C, Kumar R, Shea R, Kohler E, Srivastava M (2005) A dynamic operating system for sensor nodes. In: Proceedings of the mobile systems, applications, and services (MobiSys), ACM, p 117–124Google Scholar
  101. 101.
    Klues K, Liang CJM, Paek J, Musaloiu-Elefteri R, Levis P, Terzis A, Govindan R (2009) TOSThreads: Thread-safe and non-invasive preemption in TinyOS. In: Proceedings of the 7th ACM conference on embedded networked sensor systems, ACM, p 127–140Google Scholar
  102. 102.
    Liu X, Hou KM, de Vaulx C, Shi H, Gholami KE (2014) MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes. Sensors 14:17621–17654. doi: 10.3390/s140917621 CrossRefGoogle Scholar
  103. 103.
    Xenomai (2016) About Xenomai. https://xenomai.org/about-xenomai/. Accessed 20 Mar 2016
  104. 104.
    Kushalnagar N, Montenegro G, Schumacher C (2007) IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): overview, assumptions, problem statement, and goals. https://tools.ietf.org/html/rfc4919, Accessed 18 Mar 2016
  105. 105.
    Montenegro G, Kushalnagar N, Hui J, Culler D (2007) Transmission of IPv6 packets over IEEE 802.15.4 networks. https://tools.ietf.org/html/rfc4944. Accessed 18 Mar 2016
  106. 106.
    Winter T, Thubert P, RPL Author Team (2012) RPL: IPv6 routing protocol for low power and lossy networks. https://tools.ietf.org/html/rfc6550. Accessed 18 Mar 2016
  107. 107.
    Shelby Z, Hartke K, Bormann C (2014) The Constrained Application Protocol (CoAP). https://tools.ietf.org/html/rfc7252. Accessed 18 Mar 2016
  108. 108.
    OASIS (2014) MQTT version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html. Accessed 18 Mar 2016
  109. 109.
    Fielding RT (2000) Architectural styles and the design of network-based software architectures. Ph.D. dissertation, Irvin UniversityGoogle Scholar
  110. 110.
    Durrant-Whyte HF (1988) Sensor models and multisensor integration. Int J Robot Res 7:97–113. doi: 10.1177/027836498800700608 CrossRefGoogle Scholar
  111. 111.
    Wu H (2004) Sensor data fusion for context-aware computing using dempster-shafer theory. Carnegie Mellon University, PittsburghGoogle Scholar
  112. 112.
  113. 113.
  114. 114.
    Easy CAD to SVG converter. http://dwg2svg.en.softonic.com/
  115. 115.
  116. 116.
    Dorigo M, Stützle T (2010) Ant colony optimization: overview and recent advances. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheuristics, Springer US, pp 227–263Google Scholar
  117. 117.
    Chang Q, Wang W, Li Q, Towards automatic context-sense for seamless navigation and localization using smart phone sensors. Sensors (to be published)Google Scholar
  118. 118.
  119. 119.
  120. 120.
  121. 121.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gianmario Motta
    • 2
    Email author
  • Tianyi Ma
    • 2
  • Kaixu Liu
    • 2
  • Edwige Pissaloux
    • 4
  • Muhammad Yusro
    • 3
  • Kalamullah Ramli
    • 3
  • Jean Connier
    • 1
  • Philippe Vaslin
    • 1
  • Jian-jin Li
    • 1
  • Christophe de Vaulx
    • 1
  • Hongling Shi
    • 1
  • Xunxing Diao
    • 1
  • Kun-Mean Hou
    • 1
  1. 1.Université Clermont AuvergneAubièreFrance
  2. 2.University in PaviaPaviaItaly
  3. 3.Universitas IndonesiaDepokIndonesia
  4. 4.Université de Rouen NormandieRouenFrance

Personalised recommendations