Abstract
Brain matter extraction from MR images is an essential, but tedious process performed manually by skillful medical professionals. Automation can be a potential solution to this complicated task. However, it is an ambitious task due to the irregular boundaries between the grey and white matter regions. The intensity inhomogeneity in the MR images further adds to the complexity of the problem. In this paper, we propose a high dimensional translation, rotation, and scale-invariant feature, further used by a variational framework to perform the desired segmentation. The proposed model is able to accurately segment out the brain matter. The above argument is supported by extensive experimentation and comparison with the state-of-the-art methods performed on several MRI scans taken from the McGill Brain Web.
Keywords
- Brain Matter
- Gabor Feature
- Intensity Property
- Intensity Inhomogeneity
- Variational Framework
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options







References
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18, 885–896 (1999)
Wang, L., Chen, Y., Pan, X., Hong, X., Xia, D.: Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. IEEE Trans. Med. Imaging 188, 316–325 (2010)
Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007)
Angoth, V., Dwith, C., Singh, A.: A novel wavelet based image fusion for brain tumor detection. IEEE Trans. Med. Imaging 2, 1–7 (2013)
Dwith, C., Angoth, V., Singh, A.: Wavelet based image fusion for detection of brain tumor. IEEE Trans. Med. Imaging 5, 25 (2013)
Yi, Z., Criminisi, A., Shotton, J., Blake, A.: Discriminative, semantic segmentation of brain tissue in MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 558–565. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04271-3_68
Marroquín, J.L., Vemuri, B.C., Botello, S., Calderón, F., Fernandez-Bouzas, A.: An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans. Med. Imaging 21, 934–945 (2002)
Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. IEEE Trans. Med. Imaging 13, 856–876 (2001)
Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25, 1233–1245 (2006)
Peng, Z., Wee, W., Lee, J.H.: Automatic segmentation of MR brain images using spatial-varying Gaussian mixture and Markov random field approach. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, pp. 80–80. IEEE (2006)
Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Volumetric layer segmentation using coupled surfaces propagation. In: Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 708–715. IEEE (1998)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001)
Ashburner, J., Friston, K.: Multimodal image coregistration and partitioning–a unified framework. Neuroimage 6, 209–217 (1997)
Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine-based classification of Alzheimers disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83 (2009)
Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M.: Fully automatic segmentation of multiple sclerosis lesions in brain MR flair images using adaptive mixtures method and Markov random field model. IEEE Trans. Med. Imaging 38, 379–390 (2008)
Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Med. Imaging 9, 459–467 (2005)
Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: 3D variational brain tumor segmentation using a high dimensional feature set. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)
Singh, A., Karanam, S., Bajpai, S., Choubey, A., Raviteja, T.: Malignant brain tumor detection. Int. J. Comput. Theor. Eng. 4, 1002–1006 (2011)
Cui, W., Wang, Y., Lei, T., Fan, Y., Feng, Y.: Level set segmentation of medical images based on local region statistics and maximum a posteriori probability. Comput. Math. Methods Med. 2013, 1–12 (2013)
He, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. IEEE Trans. Med. Imaging 92, 587–600 (2012)
Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Med. Imaging 17, 1940–1949 (2008)
Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. IEEE Trans. Med. Imaging 89, 2435–2447 (2009)
Wang, Y., Xiang, S., Pan, C., Wang, L., Meng, G.: Level set evolution with locally linear classification for image segmentation. IEEE Trans. Med. Imaging 46, 1734–1746 (2013)
Hahn, J., Lee, C.O.: Geometric attraction-driven flow for image segmentation and boundary detection. IEEE Trans. Med. Imaging 21, 56–66 (2010)
Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. IEEE Trans. Med. Imaging 50, 271–293 (2002)
Albert, H., Rafeef, A., Roger, T., Anthony, T.: Automatic MRI brain tissue segmentation using a hybrid statistical and geometric model. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 394–397 (2006)
Karteek, P., Dana, C., Martin, J., Sirish L., S., Albert, M.: 3D variational brain tumor segmentation on a clustered feature set. In: Medical Imaging (2009)
Li, C., Huang, R., Ding, Z., Gatenby, J., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Med. Imaging 20, 2007–2016 (2011)
Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. IEEE Trans. Med. Imaging 62, 1609–1618 (2009)
Pitiot, A., Delingette, H., Thompson, P.M., Ayache, N.: Expert knowledge-guided segmentation system for brain MRI. IEEE Trans. Med. Imaging 23, S85–S96 (2004)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi:10.1007/BFb0056195
Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. IEEE Trans. Med. Imaging 25, 1479–1494 (1992)
Geusebroek, J.M., Smeulders, A.W., Van de Weijer, J.: Fast anisotropic gauss filtering. IEEE Trans. Med. Imaging 12, 938–943 (2003)
Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21, 61–75 (2002)
Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. IEEE Trans. Med. Imaging 30, 117–156 (1998)
Damon, J.: Properties of ridges and cores for two-dimensional images. IEEE Trans. Med. Imaging 10, 163–174 (1999)
Lindeberg, T.: Feature detection with automatic scale selection. IEEE Trans. Med. Imaging 30, 79–116 (1998)
Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Grimson, E., Mösges, R. (eds.) CVRMed/MRCAS -1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997). doi:10.1007/BFb0029240
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IEEE Trans. Med. Imaging 43, 29–44 (2001)
Schmid, C.: Constructing models for content-based image retrieval. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-39. IEEE (2001)
Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Med. Imaging 19, 3243–3254 (2010)
Web, B.: Simulated brain database. McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill (2004). http://www.bic.mni.mcgill.ca/brainweb/
Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE Trans. Med. Imaging 10, 266–277 (2001)
Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15, 429–442 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Madiraju, N., Singh, A., Omkar, S.N. (2017). Level Set Segmentation of Brain Matter Using a Trans-Roto-Scale Invariant High Dimensional Feature. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10117. Springer, Cham. https://doi.org/10.1007/978-3-319-54427-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-54427-4_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54426-7
Online ISBN: 978-3-319-54427-4
eBook Packages: Computer ScienceComputer Science (R0)