Level Set Segmentation of Brain Matter Using a Trans-Roto-Scale Invariant High Dimensional Feature

  • Naveen Madiraju
  • Amarjot SinghEmail author
  • S. N. Omkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10117)


Brain matter extraction from MR images is an essential, but tedious process performed manually by skillful medical professionals. Automation can be a potential solution to this complicated task. However, it is an ambitious task due to the irregular boundaries between the grey and white matter regions. The intensity inhomogeneity in the MR images further adds to the complexity of the problem. In this paper, we propose a high dimensional translation, rotation, and scale-invariant feature, further used by a variational framework to perform the desired segmentation. The proposed model is able to accurately segment out the brain matter. The above argument is supported by extensive experimentation and comparison with the state-of-the-art methods performed on several MRI scans taken from the McGill Brain Web.


Brain Matter Gabor Feature Intensity Property Intensity Inhomogeneity Variational Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18, 885–896 (1999)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Chen, Y., Pan, X., Hong, X., Xia, D.: Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. IEEE Trans. Med. Imaging 188, 316–325 (2010)Google Scholar
  3. 3.
    Vovk, U., Pernus, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26, 405–421 (2007)CrossRefGoogle Scholar
  4. 4.
    Angoth, V., Dwith, C., Singh, A.: A novel wavelet based image fusion for brain tumor detection. IEEE Trans. Med. Imaging 2, 1–7 (2013)Google Scholar
  5. 5.
    Dwith, C., Angoth, V., Singh, A.: Wavelet based image fusion for detection of brain tumor. IEEE Trans. Med. Imaging 5, 25 (2013)CrossRefGoogle Scholar
  6. 6.
    Yi, Z., Criminisi, A., Shotton, J., Blake, A.: Discriminative, semantic segmentation of brain tissue in MR images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 558–565. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04271-3_68 CrossRefGoogle Scholar
  7. 7.
    Marroquín, J.L., Vemuri, B.C., Botello, S., Calderón, F., Fernandez-Bouzas, A.: An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans. Med. Imaging 21, 934–945 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. IEEE Trans. Med. Imaging 13, 856–876 (2001)Google Scholar
  9. 9.
    Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imaging 25, 1233–1245 (2006)CrossRefGoogle Scholar
  10. 10.
    Peng, Z., Wee, W., Lee, J.H.: Automatic segmentation of MR brain images using spatial-varying Gaussian mixture and Markov random field approach. In: Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, pp. 80–80. IEEE (2006)Google Scholar
  11. 11.
    Zeng, X., Staib, L.H., Schultz, R.T., Duncan, J.S.: Volumetric layer segmentation using coupled surfaces propagation. In: Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 708–715. IEEE (1998)Google Scholar
  12. 12.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001)CrossRefGoogle Scholar
  13. 13.
    Ashburner, J., Friston, K.: Multimodal image coregistration and partitioning–a unified framework. Neuroimage 6, 209–217 (1997)CrossRefGoogle Scholar
  14. 14.
    Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine-based classification of Alzheimers disease from whole-brain anatomical MRI. Neuroradiology 51, 73–83 (2009)CrossRefGoogle Scholar
  15. 15.
    Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M.: Fully automatic segmentation of multiple sclerosis lesions in brain MR flair images using adaptive mixtures method and Markov random field model. IEEE Trans. Med. Imaging 38, 379–390 (2008)Google Scholar
  16. 16.
    Shen, S., Sandham, W., Granat, M., Sterr, A.: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. Med. Imaging 9, 459–467 (2005)Google Scholar
  17. 17.
    Cobzas, D., Birkbeck, N., Schmidt, M., Jagersand, M., Murtha, A.: 3D variational brain tumor segmentation using a high dimensional feature set. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, pp. 1–8. IEEE (2007)Google Scholar
  18. 18.
    Singh, A., Karanam, S., Bajpai, S., Choubey, A., Raviteja, T.: Malignant brain tumor detection. Int. J. Comput. Theor. Eng. 4, 1002–1006 (2011)Google Scholar
  19. 19.
    Cui, W., Wang, Y., Lei, T., Fan, Y., Feng, Y.: Level set segmentation of medical images based on local region statistics and maximum a posteriori probability. Comput. Math. Methods Med. 2013, 1–12 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    He, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. IEEE Trans. Med. Imaging 92, 587–600 (2012)Google Scholar
  21. 21.
    Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Med. Imaging 17, 1940–1949 (2008)MathSciNetGoogle Scholar
  22. 22.
    Wang, L., He, L., Mishra, A., Li, C.: Active contours driven by local Gaussian distribution fitting energy. IEEE Trans. Med. Imaging 89, 2435–2447 (2009)zbMATHGoogle Scholar
  23. 23.
    Wang, Y., Xiang, S., Pan, C., Wang, L., Meng, G.: Level set evolution with locally linear classification for image segmentation. IEEE Trans. Med. Imaging 46, 1734–1746 (2013)zbMATHGoogle Scholar
  24. 24.
    Hahn, J., Lee, C.O.: Geometric attraction-driven flow for image segmentation and boundary detection. IEEE Trans. Med. Imaging 21, 56–66 (2010)Google Scholar
  25. 25.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. IEEE Trans. Med. Imaging 50, 271–293 (2002)zbMATHGoogle Scholar
  26. 26.
    Albert, H., Rafeef, A., Roger, T., Anthony, T.: Automatic MRI brain tissue segmentation using a hybrid statistical and geometric model. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 394–397 (2006)Google Scholar
  27. 27.
    Karteek, P., Dana, C., Martin, J., Sirish L., S., Albert, M.: 3D variational brain tumor segmentation on a clustered feature set. In: Medical Imaging (2009)Google Scholar
  28. 28.
    Li, C., Huang, R., Ding, Z., Gatenby, J., Metaxas, D.N., Gore, J.C.: A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Med. Imaging 20, 2007–2016 (2011)MathSciNetGoogle Scholar
  29. 29.
    Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. IEEE Trans. Med. Imaging 62, 1609–1618 (2009)Google Scholar
  30. 30.
    Pitiot, A., Delingette, H., Thompson, P.M., Ayache, N.: Expert knowledge-guided segmentation system for brain MRI. IEEE Trans. Med. Imaging 23, S85–S96 (2004)CrossRefGoogle Scholar
  31. 31.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi: 10.1007/BFb0056195 CrossRefGoogle Scholar
  32. 32.
    Mehrotra, R., Namuduri, K.R., Ranganathan, N.: Gabor filter-based edge detection. IEEE Trans. Med. Imaging 25, 1479–1494 (1992)Google Scholar
  33. 33.
    Geusebroek, J.M., Smeulders, A.W., Van de Weijer, J.: Fast anisotropic gauss filtering. IEEE Trans. Med. Imaging 12, 938–943 (2003)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21, 61–75 (2002)CrossRefGoogle Scholar
  35. 35.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. IEEE Trans. Med. Imaging 30, 117–156 (1998)Google Scholar
  36. 36.
    Damon, J.: Properties of ridges and cores for two-dimensional images. IEEE Trans. Med. Imaging 10, 163–174 (1999)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Lindeberg, T.: Feature detection with automatic scale selection. IEEE Trans. Med. Imaging 30, 79–116 (1998)Google Scholar
  38. 38.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Grimson, E., Mösges, R. (eds.) CVRMed/MRCAS -1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997). doi: 10.1007/BFb0029240 CrossRefGoogle Scholar
  39. 39.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)CrossRefGoogle Scholar
  40. 40.
    Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IEEE Trans. Med. Imaging 43, 29–44 (2001)zbMATHGoogle Scholar
  41. 41.
    Schmid, C.: Constructing models for content-based image retrieval. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-39. IEEE (2001)Google Scholar
  42. 42.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Med. Imaging 19, 3243–3254 (2010)MathSciNetGoogle Scholar
  43. 43.
    Web, B.: Simulated brain database. McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill (2004).
  44. 44.
    Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE Trans. Med. Imaging 10, 266–277 (2001)zbMATHGoogle Scholar
  45. 45.
    Wells, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive segmentation of MRI data. IEEE Trans. Med. Imaging 15, 429–442 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ECENational Institute of TechnologyWarangalIndia
  2. 2.Faculty of Applied SciencesSimon Fraser UniversityBurnabyCanada
  3. 3.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations