Skip to main content

Pedestrian and Vehicle Detection and Tracking with Object-Driven Vanishing Line Estimation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Abstract

To robustly detect people and vehicle on the road in a video sequence is a challenging problem. Most researches focus on detecting or tracking of specific targets only. On the contrary, instead of detecting vehicle or pedestrian individually, an integration framework combining the geometric information is proposed. The camera’s pitch angle is estimated with a novel vanishing line estimator. Not only detecting the vanishing point using line intersection approach, but also the object information from tracker are considered. Specifically, the detected vehicle or pedestrian will cast votes for the hypothesized horizon line. The vanishing line can be estimated even when the scenes are cluttered or crowded, and thus the geometric information can be estimated under challenging circumstance. In turn, such information of scene can help the system refine our detection results through Bayes’ network. Finally, to verify the performance of the system, comprehensive experiments have been conducted with the KITTI dataset. It is quite promising that the state-of-the-art detector, in our case, Regionlet detector, can be improved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. Int. J. Comput. Vision 80, 3–15 (2008)

    Article  Google Scholar 

  2. Nieto, M., Laborda, J.A., Salgado, L.: Road environment modeling using robust perspective analysis and recursive bayesian segmentation. Mach. Vis. Appli. 22, 927–945 (2011)

    Article  Google Scholar 

  3. Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.: 3D traffic scene understanding from movable platforms. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1012–1025 (2014)

    Article  Google Scholar 

  4. Richardson, E., Peleg, S., Werman, M.: Scene geometry from moving objects. In: IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 13–18 (2014)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Computer Vision and Patter Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  6. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 743–761 (2012)

    Article  Google Scholar 

  7. Ess, A., Leibe, B., Schindler, K., Van Gool, L.: A mobile vision system for robust multi-person tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  8. Wojek, C., Roth, S., Schindler, K., Schiele, B.: Monocular 3D scene modeling and inference: understanding multi-object traffic scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 467–481. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_34

    Chapter  Google Scholar 

  9. Sudowe, P., Leibe, B.: Efficient use of geometric constraints for sliding-window object detection in video. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 11–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23968-7_2

    Chapter  Google Scholar 

  10. Moghadam, P., Starzyk, J.A., Wijesoma, W.S.: Fast vanishing-point detection in unstructured environments. IEEE Trans. Image Process. 21, 425–430 (2012)

    Article  MathSciNet  Google Scholar 

  11. Geiger, A., Wojek, C., Urtasun, R.: Joint 3D estimation of objects and scene layout. In: Advances in Neural Information Processing Systems, pp. 1467–1475 (2011)

    Google Scholar 

  12. Lezama, J., Grompone von Gioi, R., Randall, G., Morel, J.M.: Finding vanishing points via point alignments in image primal and dual domains. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 509–515 (2014)

    Google Scholar 

  13. Yang, W., Luo, X., Fang, B., Zhang, D., Tang, Y.Y.: Fast and accurate vanishing point detection in complex scenes. In: IEEE Conference on Intelligent Transportation Systems, pp. 93–98 (2014)

    Google Scholar 

  14. Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of manhattan worlds. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2831–2838 (2012)

    Google Scholar 

  15. Nieto, M., Salgado, L.: Real-time robust estimation of vanishing points through nonlinear optimization. In: SPIE Photonics Europe, pp. 772402–772402-14. International Society for Optics and Photonics (2010)

    Google Scholar 

  16. Quan, L., Mohr, R.: Determining perspective structures using hierarchical hough transform. Pattern Recogn. Lett. 9, 279–286 (1989)

    Article  MATH  Google Scholar 

  17. Dubska, M., Herout, A., Havel, J.: Pclines - line detection using parallel coordinates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1489–1494 (2011)

    Google Scholar 

  18. Vermaak, J., Doucet, A., Perez, P.: Maintaining multimodality through mixture tracking. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1110–1116 (2003)

    Google Scholar 

  19. Lanz, O.: Approximate bayesian multibody tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1436–1449 (2006)

    Article  Google Scholar 

  20. Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 685–692 (2010)

    Google Scholar 

  21. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1820–1833 (2011)

    Article  Google Scholar 

  22. Leibe, B., Schindler, K., Cornelis, N., Van Gool, L.: Coupled object detection and tracking from static cameras and moving vehicles. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1683–1698 (2008)

    Article  Google Scholar 

  23. Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36, 58–72 (2014)

    Article  Google Scholar 

  24. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998)

    Article  Google Scholar 

  25. Bota, S., Nedesvchi, S.: Multi-feature walking pedestrians detection for driving assistance systems. IET Intel. Trans. Syst. 2, 92–104 (2008)

    Article  Google Scholar 

  26. Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. Int. J. Comput. Vision 29, 5–28 (1998)

    Article  Google Scholar 

  27. Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive probabilistic hough transform. Comput. Vis. Image Underst. 78, 119–137 (2000)

    Article  Google Scholar 

  28. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  29. Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. In: IEEE International Conference on Computer Vision, pp. 17–24 (2013)

    Google Scholar 

  30. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  31. Xiang, Y., Alahi, A., Savarese, S.: Learning to track: Online multi-object tracking by decision making. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4705–4713 (2015)

    Google Scholar 

  32. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ming Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chan, YM., Fu, LC., Hsiao, PY., Huang, SS. (2017). Pedestrian and Vehicle Detection and Tracking with Object-Driven Vanishing Line Estimation. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics