Abstract
We propose to find changes in the constantly changing world, given visual observations at street-level. In particular, we identify “long-term” changes between Google Street View images and dashcam videos captured at different months or even years. This is a challenging task, since (1) dashcam frames are not localized in world coordinate, and (2) there are many changes introduced by moving objects. We propose a robust sequence alignment method to align dashcam sequence to Street View images. Our method outperforms a strong baseline method [1] by \(12\%\) mean Average Precision (AP). We also propose a novel change detection method designed to detect long-term changes. Our change detection method (\({13.54}\%\)) outperforms a baseline method without handling car interior and moving objects (\({11.70}\%\)) by \(1.84\%\) (relatively \(13.6\%\)) in mean AP. In a controlled experiment, given manually aligned high quality Street View images, our change detection method achieves a significantly better mean AP (\(45.57\%\)).
Keywords
- Reference Image
- Average Precision
- Reconstruction Error
- Query Image
- Confidence Score
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options











Notes
- 1.
It is very common that the rough GPS location of a dashcam video is described in the video description for the purpose of reporting accident.
- 2.
We calculate the intersection over union area.
- 3.
\(30\%\) is used, since ground truth changes are typical irregular and possibly consists of more than one objects. It is very challenging to precisely detect the ground truth change rectangle.
References
Vaca-Castano, G., Zamir, A., Shah, M.: City scale geo-spatial trajectory estimation of a moving camera. In: CVPR (2012)
Badino, H., Huber, D., Kanade, T.: Real-time topometric localization. In: ICRA (2012)
Kim, J., Liu, C., Sha, F., Grauman, K.: Deformable spatial pyramid matching for fast dense correspondences. In: CVPR (2013)
Robertson, D., Cipolla, R.: An image-based system for urban navigation. In: BMVC (2004)
Zhang, W., Kosecka, J.: Image based localization in urban environments. In: 3DPVT (2006)
Schindler, G., Brown, M., Szeliski, R.: City-scale location recognition. In: CVPR (2007)
Hays, J., Efros, A.A.: Im2gps: estimating geographic information from a single image. In: CVPR (2008)
Zamir, A.R., Shah, M.: Accurate image localization based on google maps street view. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 255–268. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_19
Cao, S., Snavely, N.: Graph-based discriminative learning for location recognition. In: CVPR (2013)
Bettadapura, V., Essa, I., Pantofaru, C.: Egocentric field-of-view localization using first-person point-of-view devices. In: WACV (2015)
Irschara, A., Zach, C., Frahm, J., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: CVPR (2009)
Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9_57
Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: ICCV (2011)
Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_2
Taneja, A., Ballan, L., Pollefeys, M.: Never get lost again: vision based navigation using streetview images. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 99–114. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16814-2_7
Lategahn, H., Schreiber, M., Ziegler, J., Stiller, C.: Urban localization with camera and inertial measurement unit. In: Intelligent Vehicles Symposium (IV) (2013)
Floros, G., van der Zander, B., Leibe, B.: OpenStreetSLAM: global vehicle localization using openstreetmaps. In: ICRA (2013)
Brubaker, M., Geiger, A., Urtasun, R.: Lost! leveraging the crowd for probabilistic visual self-localization. In: CVPR (2013)
Radke, R., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. TIP 14, 294–307 (2005)
Pollard, T., Mundy, J.: Change detection in a 3-d world. In: CVPR (2007)
Taneja, A., Ballan, L., Pollefeys, M.: City-scale change detection in cadastral 3d models using images. In: CVPR (2013)
Matzen, K., Snavely, N.: Scene chronology. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 615–630. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10584-0_40
Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)
Wu, C.: Visualsfm: a visual structure from motion system. http://ccwu.me/vsfm/
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Jegou, H., Perronnin, F., Douze, M., Snchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. TPAMI 34, 1704–1716 (2011)
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.: Conditional random fields as recurrent neural networks. In: ICCV (2015)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_26
Acknowledgement
We thank Industrial Technology Research Institute (ITRI) project grants and MOST 103-2218-E-007-025 and MOST 104-3115-E-007-005 in Taiwan for their support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chen, KT., Wang, FE., Lin, JT., Chan, FH., Sun, M. (2017). The World Is Changing: Finding Changes on the Street. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-54407-6_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54406-9
Online ISBN: 978-3-319-54407-6
eBook Packages: Computer ScienceComputer Science (R0)