Skip to main content

Non-linear System Identification Using the Hilbert-Huang Transform and Complex Non-linear Modal Analysis

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

Modal analysis is a well-established method for analysis of linear dynamic structures, but its extension to non-linear structures has proven to be much more problematic. A number of viewpoints on non-linear modal analysis as well as a range of different non-linear system identification techniques have emerged in the past, each of which tries to preserve a subset of properties of the original linear theory. The objective of this paper is to discuss how the Hilbert-Huang transform can be used for detection and characterization of non-linearity, and to present an optimization framework which combines the Hilbert-Huang transform and complex non-linear modal analysis for quantification of the selected model. It is argued that the complex non-linear modes relate to the intrinsic mode functions through the reduced order model of slow-flow dynamics. The method is demonstrated on simulated data from a system with cubic non-linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.-C.: Past, present and future of nonlinear system identification in structural dynamics. Mech. Syst. Signal Process. 20 (3), 505–592 (2006)

    Article  Google Scholar 

  2. Noël, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syste. Signal Process. 83, 2–35 (2017). ISSN 0888-3270, http://dx.doi.org/10.1016/j.ymssp.2016.07.020

  3. Renson L., Kerschen G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 351, 299–310 (2015)

    Article  Google Scholar 

  4. Peeters, M., Kerschen, G., Golinval, J.-C.: Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech. Syst. Signal Process. 25 (4), 1227–1247 (2011)

    Article  Google Scholar 

  5. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: A time-domain nonlinear system identification method based on multiscale dynamic partitions. Meccanica 46 (4), 625–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pai, F.P.: Time–frequency characterization of nonlinear normal modes and challenges in nonlinearity identification of dynamical systems. Mech. Syst. Signal Process. 25 (7), 2358–2374 (2011)

    Article  Google Scholar 

  7. Feldman, M.: Hilbert Transform Application in Mechanical Vibration. Wiley, New York (2011)

    Book  Google Scholar 

  8. Kerschen, G., Vakakis, A.F., Lee, Y.S., Mcfarland, M.D., Bergman, L.A.: Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics. J. Vib. Control. 14 (1–2), 77–105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (1998)

    Google Scholar 

  10. Yang, J.N., Lei, Y., Pan, S., Huang, N.E.: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes. Earthq. Eng. Struct. Dyn. 32 (9), 1443–1467 (2003)

    Google Scholar 

  11. Lee, Y.S., Tsakirtzis, S., Vakakis, A.F., Bergman, L.A., McFarland, M.D.: Physics-based foundation for empirical mode decomposition. AIAA J. 47 (12), 2938–2963 (2009)

    Article  Google Scholar 

  12. Laxalde, D., Thouverez, F.: Complex non-linear modal analysis for mechanical systems: application to turbomachinery bladings with friction interfaces. J. Sound Vib. 322 (4–5), 1009–1025 (2009)

    Article  Google Scholar 

  13. Krack, M., Panning-Von Scheidt, L., Wallaschek, J.: A method for nonlinear modal analysis and synthesis: application to harmonically forced and self-excited mechanical systems. J. Sound Vib. 332 (25), 6798–6814 (2013)

    Article  Google Scholar 

  14. Krack, M., Panning-Von Scheidt, L., Wallaschek, J.: On the computation of the slow dynamics of nonlinear modes of mechanical systems. Mech. Syst. Signal Process. 42 (1–2), 71–87 (2014)

    Article  Google Scholar 

  15. Ondra, V., Sever, I. A., Schwingshackl, C.W.: Non-parametric identification of asymmetric signals and characterization of a class of non-linear systems based on frequency modulation. In: ASME International Mechanical Engineering Congress and Exposition. Dynamics, Vibration, and Control, vol. 4B (2016). doi:10.1115/IMECE2016-65229

    Google Scholar 

  16. Ondra, V., Sever, I.A., Schwingshackl, C.W.: A method for non-parametric identification of non-linear vibration systems with asymmetric restoring forces from a free decay response. J. Sound Vib. (2017, under review)

    Google Scholar 

  17. Londoño, J.M., Neild, S.A., Cooper, J.E.: Identification of backbone curves of nonlinear systems from resonance decay responses. J. Sound Vib. 348, 224–238 (2015)

    Article  Google Scholar 

  18. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–II. Forced vibration analysis method ‘Forcevib’. Mech. Syst. Signal Process. 8 (3), 309–318 (1994)

    Google Scholar 

  19. Noël, J.-P., Renson, L., Grappasonni, C., Kerschen, G.: Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech. Syst. Signal Process. 74, 95–110 (2016)

    Article  Google Scholar 

  20. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1 (1), 6281–6284 (2009)

    Article  Google Scholar 

  21. Colominas, M., Schlotthauer, G., Torres, M.E.: An unconstrained optimization approach to empirical mode decomposition. Digital Signal Process. 40, 164–175 (2015)

    Article  MathSciNet  Google Scholar 

  22. Wang, Y.-H., Yeh, C.-H., Young, H.-W.V., Hu, K., Lo, M.-T.: On the computational complexity of the empirical mode decomposition algorithm. Phys. A Stat. Mech. Appl. 400, 159–167 (2014). ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2014.01.020

  23. Rilling, G., Flandrin, P.: One or two frequencies? The empirical mode decomposition answers. IEEE Trans. Signal Process. 56 (1), 85–95 (2008)

    Article  Google Scholar 

  24. Deering, R., Kaiser, J.F.: The use of a masking signal to improve empirical mode decomposition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. IV, pp. 485–488 (2005)

    Google Scholar 

  25. Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., Blank, K.: On instantaneous frequency. Adv. Adapt. Data Anal. 1 (2), 177–229 (2009)

    Article  MathSciNet  Google Scholar 

  26. Ondra, V., Riethmueller, R., Brake, M.R.W., Schwingshackl, C.W., Polunin, P.M., Shaw, S.W.: Comparison of nonlinear system identification methods for free decay measurements with application to MEMS devices. In: Proceedings of International Modal Analysis Conference (IMAC) 2017 (2017)

    Google Scholar 

  27. Pai, F.P., Palazotto, A.N.: Detection and identification of nonlinearities by amplitude and frequency modulation analysis. Mech. Syst. Signal Process. 22 (5), 1107–1132 (2008)

    Article  Google Scholar 

  28. Feldman, M.: Non-linear system vibration analysis using Hilbert transform–I. Free vibration analysis method ‘Freevib’. Mech. Syst. Signal Process. 8 (2), 119–127 (1994)

    Google Scholar 

  29. Salzenstein, F., Boudraa, A.-O., Cexus, J.-C.: Generalized higher-order nonlinear energy operators. J. Opt. Soc. Am. 24 (12), 3717–3727 (2007)

    Article  Google Scholar 

  30. Ondra, V., Sever, I.A., Schwingshackl, C.W.: A method for detection and characterisation of structural non-linearities using the Hilbert transform and neural networks. Mech. Syst. Signal Process. 83, 210–227 (2017)

    Article  Google Scholar 

  31. Arora, J.S.: Introduction to Optimum Design, 3rd edn. Academic, Boston (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Rolls-Royce plc for providing the financial support for this project and for giving permission to publish this work. This work is part of a Collaborative R and T Project “SAGE 3 WP4 Nonlinear Systems” supported by the CleanSky Joint Undertaking and carried out by Rolls-Royce plc and Imperial College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Ondra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Ondra, V., Sever, I.A., Schwingshackl, C.W. (2017). Non-linear System Identification Using the Hilbert-Huang Transform and Complex Non-linear Modal Analysis. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-54404-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54404-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54403-8

  • Online ISBN: 978-3-319-54404-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics