Design of a Frequency-Energy Independent Nonlinear Oscillator

  • Martin Jerschl
  • Kai Willner
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


A method for the design of a frequency-energy independent nonlinear oscillator, for example a jointed system, is presented. Usually, nonlinear dynamic systems are energy dependent. For a geometrically nonlinear system the eigenfrequency increases with rising energy in the system. For a friction damped system the opposite is the case. These two contrary behaviours of nonlinear system types are used to design a frequency-energy-independent system. The Hilbert-transform is used as a design tool in combination with the Multi-Harmonic-Balance-Method (MHBM). An approach for automated design is introduced.


Friction Hilbert transform Nonlinear dynamics Nonlinear normal modes (NNMs) Optimal system design 


  1. 1.
    Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.-C.: Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23 (1), 195–216 (2009)Google Scholar
  2. 2.
    Jerschl, M., Süß, D., Willner, K.: Numerical continuation methods for the concept of non-linear normal modes. In: Catbas, F.N. (ed.) Dynamics of Civil Structures. Conference Proceedings of the Society for Experimental Mechanics Series, vol. 4, pp. 19–26. Springer International Publishing, Cham (2014)Google Scholar
  3. 3.
    Jerschl, M., Süß, D., Willner, K.: Studies of a geometrical nonlinear friction damped system using NNMS. In: Allen, M., Mayes, R.L., Rixen, D. (eds.) Dynamics of Coupled Structures. Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics 2016, vol. 4, pp. 341–348. Springer International Publishing, Cham (2016)Google Scholar
  4. 4.
    Krack, M.: The concept of nonlinear modes applied to friction-damped systems. In: Berichte aus dem IDS. PZH Verl., TEWISS - Technik und Wissen GmbH, vol. 2014, 5 Garbsen (2014)Google Scholar
  5. 5.
    Kerschen, G., Peeters, M., Golinval, J.-C., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23, 170–194 (2009)Google Scholar
  6. 6.
    Renson, L.: Nonlinear Modal Analysis of Conservative and Nonconservative Aerospace Structures. PhD thesis, Université de Liège, Liège (2014)Google Scholar
  7. 7.
    Rosenberg, R.M.: Normal modes of nonlinear dual-mode systems. J. Appl. Mech. 27, 263–268 (1960)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Shaw, S.W., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150 (1), 170–173 (1991)CrossRefGoogle Scholar
  9. 9.
    Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification, and Modelling. Institute of Physics, Bristol [England] and Philadelphia (2001)Google Scholar
  10. 10.
    Süß, D., Willner, K.: Investigation of a jointed friction oscillator using the multiharmonic balance method. Mech. Syst. Signal Process. 52–53, 73–87 (2015)CrossRefGoogle Scholar
  11. 11.
    Geisler, J.: Numerische und experimentelle Untersuchungen zum dynamischen Verhalten von Strukturen mit Fügestellen. PhD thesis, Friedrich-Alexander Universität Erlangen-Nürnberg (2010)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2017

Authors and Affiliations

  1. 1.Chair of Applied MechanicsFriedrich-Alexander Universitaet Erlangen-NuernbergErlangenGermany

Personalised recommendations