Persistent Models for Complex Control Systems

  • Shahab Ilbeigi
  • David Chelidze
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


We use smooth orthogonal decomposition (SOD) as a multivariate analysis method to obtain a reduced order model for an example of a complex nonlinear control system.We evaluate the robustness of the reduced order models. Our results show that SOD-based reduced control models are able to reduce the computation time of the actual system.


Nonlinear model reduction Proper orthogonal decomposition Smooth orthogonal decomposition Nonlinear control systems Subspace robustness 


  1. 1.
    Ilbeigi, S., Javad, J., Anooshiravan, F.: A novel scheme for nonlinear displacement-dependent dampers. Nonlinear Dyn. 70 (1), 421–434 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Karimi, M., Javad, J., Shahab, I.: A novel scheme for flexible NURBS-based C2 PH Spline Curve contour following task using Neural Network. Int. J. Precis. Eng. Manuf. 15 (12), 2659–2672 (2014)CrossRefGoogle Scholar
  3. 3.
    Jahanpour, J., Shahab, I., Mojtaba, P.: Resonant analysis of systems equipped with nonlinear displacement-dependent (NDD) dampers. In: Nonlinear Dynamics, vol. 1, pp. 67–82. Springer International Publishing, New York (2016)Google Scholar
  4. 4.
    Jahanpour, J., Mojtaba, P., Shahab, I.: Forced vibration analysis of a system equipped with a Nonlinear Displacement-Dependent (NDD) damper. Sci. Iran. Trans. B Mech. Eng. 23 (2), 633 (2016)Google Scholar
  5. 5.
    Atwell, J.A., Borggaard, J.T., King, B.B.: Reduced order controllers for burgers’ equation with a nonlinear observer. Appl. Math. Comput. Sci. 11 (6), 1311–1330 (2001)MathSciNetMATHGoogle Scholar
  6. 6.
    Rathinam, M., Petzold, L.R.: A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (5), 1893–1925 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcation Chaos 15 (03), 997–1013 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Smith, T.R.: Low-dimensional models of plane Couette flow using the proper orthogonal decomposition (2003)Google Scholar
  9. 9.
    Scherpen, J.M.: Balancing for nonlinear systems. Syst. Control Lett. 21 (2), 143–153 (1993)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Scherpen, J.M.: H balancing for nonlinear systems. Int. J. Robust Nonlin. Control 6 (7), 645–668 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fujimoto, K., Scherpen, J.M.: Balanced realization and model order reduction for nonlinear systems based on singular value analysis. SIAM J. Control Optim. 48 (7), 4591–4623 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Der Veen, A.-J., Deprettere, E.F., Swindlehurst, A.L.: Subspace-based signal analysis using singular value decomposition. Proc. IEEE 81 (9), 1277–1308 (1993)Google Scholar
  13. 13.
    Lall, S., Marsden, J.E., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlin. Control 12 (6) 519–535 (2002)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Foias, C., Jolly, M., Kevrekidis, I., Sell, G., Titi, E.: On the computation of inertial manifolds. Phys. Lett. A 131 (7), 433–436 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pesheck, E., Pierre, C., Shaw, S.: A new galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249 (5), 971–993 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Eydani, A.M., Niezrecki, C., Sherwood, J., Avitabile, P.: Vibration prediction of thin-walled composite I-beams using scaled models. Thin-Walled Struct. 113, 151–161 (2017). doi:
  17. 17.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 2323–2330 (2002)CrossRefGoogle Scholar
  18. 18.
    Benner, P., Breiten, T.: Two-sided projection methods for nonlinear model order reduction. SIAM J. Sci. Comput. 37 (2), B239–B260 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Georgiou, I.: Advanced proper orthogonal decomposition tools: using reduced order models to identify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear rods. Nonlin. Dyn. 41 (1–3), 69–110 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y., Calo, V., et al.: Fast multiscale reservoir simulations using pod-deim model reduction. In: SPE Reservoir Simulation Symposium, Society of Petroleum Engineers (2015)Google Scholar
  21. 21.
    Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41 (1–3), 147–169 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ilbeigi, S., Chelidze, D.: Model order reduction of nonlinear euler-bernoulli beam. In: Nonlinear Dynamics, vol. 1, pp. 377–385. Springer, Berlin (2016)Google Scholar
  23. 23.
    Ilbeigi, S., Chelidze, D.: Reduced order models for systems with disparate spatial and temporal scales. In: Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry, vol. 8, pp. 447–455. Springer, Berlin (2016)Google Scholar
  24. 24.
    Chelidze, D., Zhou, W.: Smooth orthogonal decomposition-based vibration mode identification. J. Sound Vib. 292 (3), 461–473 (2006)CrossRefGoogle Scholar
  25. 25.
    Asl, M.E., Abbasi, S.H., Shabaninia, F.: Application of adaptive fuzzy control in the variable speed wind turbines. In: Artificial Intelligence and Computational Intelligence, pp. 349–356. Springer, New York (2012)Google Scholar
  26. 26.
    Feldmann, P., Freund, R.W.: Efficient linear circuit analysis by padé approximation via the Lanczos process. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14 (5), 639–649 (1995)CrossRefGoogle Scholar
  27. 27.
    Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L, -error bounds. Int. J. Control 39 (6), 1115–1193 (1984)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Zhou, H., Su, X., Song, Y.-D., Yan, Q.: Hankel-norm model reduction for delayed fuzzy systems. In: 2015 27th Chinese Control and Decision Conference (CCDC), pp. 964–968. IEEE, New York (2015)Google Scholar
  29. 29.
    Phillips, J.R., Daniel, L., Silveira, L.M.: Guaranteed passive balancing transformations for model order reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22 (8), 1027–1041 (2003)CrossRefGoogle Scholar
  30. 30.
    Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Meth. Eng. 21 (4), 331–358 (2014)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Chelidze, D.: Identifying robust subspaces for dynamically consistent reduced-order models. In: Nonlinear Dynamics, vol. 2, pp. 123–130. Springer, Berlin (2014)Google Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2017

Authors and Affiliations

  1. 1.Department of Mechanical, Industrial, and Systems EngineeringUniversity of Rhode IslandKingstonUSA

Personalised recommendations