Skip to main content

The Projection of Global and Regional Climate Change Models into Selected Ecosystem Functions and Services (Case Study Czech Republic)

  • Chapter
  • First Online:
  • 493 Accesses

Abstract

The concept of ecosystem services provides a framework for research on biodiversity and ecosystem functioning, involving the interaction of the natural environment and human activities. Under changing environmental conditions the ongoing landscape fragmentation, reduction of the size of productive ecosystems and increased competition between ecosystem services are continuously increasing. Although the quality of life depends on the continued provision of ecosystem services, many of them, such as climate regulation or regulation of runoff from a watershed, are non-tradeable and unpriced public goods. Quantifying the reduction in the provision of ecosystem services caused by climate change and ongoing air pollution is necessary in the near future to convince the majority of the human population that, under the precautionary principle, the best mitigation and adaptation measures should be adopted. The aim of this chapter is to present our engagement approach as used in biodiversity valuation, which quantifies selected ecosystem functions (e.g. production) as a basis for valuation of ecosystem services (e.g. provisioning and habitat services) under conditions of climate change. Land use development in the Czech Republic will likely show above all a decrease in arable land while urban and industrial areas increase. The change of arable land into permanent grasslands or forests is recommended to increase carbon sequestration and other water and land protection ecosystem services in the landscape.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alkemade R, Oorschot MV, Miles L, Nellemann CH, Bakkenes M, Brink BT (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12:374–390. doi:10.1007/s10021-009-9229-5

    Article  Google Scholar 

  • Araya YH, Cabral P (2010) Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens 2:1549–1563

    Article  Google Scholar 

  • Ardron J (2010) Marxan good practices handbook. Available at wwwuqeduau/marxan/ docs/Marxan%20Good%20Practices%20Handbook%20v2%202010pdf. Accessed 2 Nov 2016

  • Bhagabati NK, Ricketts T, Sulistyawan TBS, Conte M, Ennaanay D, Hadian O, McKenzie E, Olwero N, Rosenthal A, Tallis H, Wolny S (2014) Ecosystem services reinforce Sumatran tiger conservation in land use plans. Biol Conserv 169:147–156

    Article  Google Scholar 

  • Brázdil R, Trnka M (eds) (2015) History of weather and climate in Czech countries XI: drought in Czech countries. Past, present and future. Global Change Research Centre of the Academy of Sciences of the Czech Republic, v.v.i., Brno, p 402 (in Czech)

    Google Scholar 

  • Brown D, Band LE, Green KO, Irwin EG, Jain A, Lambin EF, Pontius RG, Seto KC, Turner BL II, Verburg PH (2013) Advancing land change modeling: opportunities and research requirements. The National Research Council Press, Washington

    Google Scholar 

  • Burian J, Šťastný S, Brus J, Pechanec V, Voženílek V (2015) Urban planner: model for optimal land use scenario modelling. Geografie 120:330–353

    Google Scholar 

  • CBD (2010) Global biodiversity outlook 3. Montréal, p 94

    Google Scholar 

  • Cudlín P, Štěpánek P, Macků J, Kohut M, Rožnovský J (2012) Influence of precipitation and temperature on the possibility to cultivate Norway Spruce in the Czech Republic in 1961–2100. In: Proceedings “Vláhové poměry krajin”, Mikulov, pp 23–26 (in Czech)

    Google Scholar 

  • Cudlín P, Seják J, Pokorný J, Albrechtová J, Bastian O, Marek M (2013) Forest ecosystem services under climate change and air pollution. In: Matyssek R, Clarke N, Cudlín P, Mikkelsen TN, Tuovinen J-P, Wiesner G, Paoletti E (eds) Climate change, air pollution and global challenges, understanding and perspectives from forest research developments in environmental science, vol 13. Elsevier, Oxford, pp 521–546

    Chapter  Google Scholar 

  • Erb KH, Kastner T, Luyssaert S, Houghton RA, Kuemmerle T, Olofsson P, Haberl H (2013) Bias in the attribution of forest carbon sinks. Nat Clim Chang 3:854–856

    Article  Google Scholar 

  • Fiala K, Studený V (1987) Cutting and fertilization effect on the root system in several grassland stands. Ekológia 6:389–402

    Google Scholar 

  • Game E, Grantham H (2008) Marxan user manual. University of Queensland. Available at http://marxannet/userguides. Accessed 2 Nov 2016

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Guilhaumon F, Mouillot D, Gimenez O (2010) mmSAR: an R-package for multimodel species-area relationship inference. Ecography 33:420–424

    Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang:203–207. doi:10.1038/NCLIMATE1687

  • Hlavinka P, Kersebaum KC, Dubrovský M, Fischer M, Pohanková E, Balek J, Žalud Z, Trnka M (2015) Water balance, drought stress and yields for field crop rotations under present and future conditions in the Czech Republic. Clim Res 65:175–192. doi:10.3354/cr01339

  • IPCC (2000) Land Use, land-use change, and forestry. Cambridge University Press, Cambridge, p 375

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Kotlarski S, Keuler K, Christensen OB, Colette A, Déqué M, Gobiet A, Goergen K, Jacob D, Lüthi D, van Meijgaard E, Nikulin G, Schär C, Teichmann C, Vataurd R, Warrach-Sagi K, Vulfmeyer V (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Mod Dev 7:1297–1333

    Article  Google Scholar 

  • Kovacs K, Polasky S, Nelson E, Keeler BL, Pennington D, Plantinga AJ, Taff SJ (2013) Evaluating the return in ecosystem services from investment in public land acquisitions. PLoS One 8(6):e62202

    Article  Google Scholar 

  • Krigas N, Papadimitriou K, Mazaris, AD (2012) GIS and ex situ plant conservation. In: Alam BM (ed) Application of geographic information systems. INTECH Open Access Publisher

    Google Scholar 

  • Laprise R (2008) Regional climate modelling. J Comput Phys 227:3641–3666

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Dodona P, Kostro M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J (2005) The living planet index: using species population time series to track trends in biodiversity philosophical transactions of the royal society. Biol Sci 360(1454):289–295

    Article  Google Scholar 

  • Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Chang 3(6):552–557

    Article  Google Scholar 

  • McKenzie E, Rosenthal A, Bernhardt J, Girvetz E, Kovacs K, Olwero N, Toft J (2012) Developing scenarios to assess ecosystem service tradeoffs: guidance and case studies for InVEST users. Natural capital project. Available at http://wwwnaturalcapitalprojectorg/pubs/ScenariosGuidepdf. Accessed 2 Nov 2016

  • MEA (2005) Ecosystems and human well-being: wetlands and water synthesis. Millennium ecosystem assessment. World Resources Institute, Washington, DC

    Google Scholar 

  • MNP (2006) Integrated modelling of global environmental change: an overview of IMAGE 24. Netherlands Environmental Assessment Agency Bilthoven, The Netherlands

    Google Scholar 

  • Nabuurs GJ, Pussinen A, Karjalainen T, Erhard M, Kramer K (2002) Stemwood volume increment changes in European forests due to climate change – a simulation study with the EFISCEN model. Glob Chang Biol 8:304–316

    Article  Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KM, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11

    Article  Google Scholar 

  • Nelson E, Sander H, Hawthorne P, Conte M, Ennaanay D, Wolny S, Manson S, Polasky S (2010) Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS One 5(12):e14327

    Article  Google Scholar 

  • Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34:96–112

    Article  Google Scholar 

  • Pachauri RK, Meyer L (eds) (2014) Climate change, synthesis report. A report of the Intergovernmental Panel in Climate Change, p 169

    Google Scholar 

  • Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hansosn CE (eds) (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, p 1000

    Google Scholar 

  • Polasky S, Nelson E, Pennington D, Johnson KA (2011) The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ Resour Econ 48(2):219–242

    Article  Google Scholar 

  • Rooij W (2008) Manual for biodiversity modelling on a national scale using GLOBIO3 and CLUE methodology to calculate current and future status of biodiversity. Case study area: Zambia. MNP Bilthoven, Netherlands, p 25

    Google Scholar 

  • Scholes RJ, Biggs R (2005) A biodiversity intactness index. Nature 434(7029):45–49

    Article  Google Scholar 

  • Seják J, Dejmal I, Petříček V, Cudlín P, Míchal I, Černý K, Kučera T, Vyskot I, Strejček J, Cudlínová E, Cabrnoch J, Šindler M, Prokopová M, Kovář J, Kupka M, Ščasný M, Šafařík M, Roušalová S, Stejskal V, Zapletal J (2003) Valuation and prizing of biotopes of the Czech Republic. Czech Ecological Institute, p 422 (In Czech)

    Google Scholar 

  • Seppälä R, Buck A, Katila P (eds) (2009) Adaptation of forests and people to climate change. A global assessment report IUFRO World Series Volume 22, Helsinki, p 224

    Google Scholar 

  • Sharp R, Tallis, HT, Ricketts T, Guerry AD, Wood SA, Chaplin-Kramer R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J, Griffin R, Glowinski K, Chaumont N, Perelman A, Lacayo M, Mandle L, Hamel P, Vogl AL, Rogers L, Bierbower W (2016) InVEST +VERSION+ user’s guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund

    Google Scholar 

  • Sjörs H (1991) Phyto- and Necromass above and below Ground in a Fen. Holarct Ecol 14:208–218

    Google Scholar 

  • Stará L, Matějka K, Cudlín P, Bodlák L, Pokorný J, Středa T, Čížková H, Pechar L, Burešová R, Zemek F, Marek MV (2011) Carbon storage in the vegetation of the Czech Republic and model landscape carbon budget. In: Marek M (ed) Carbon in ecosystems of the Czech Republic under climate change. Academia, Praha, pp 189–210 (In Czech)

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Trnka M, Eitzinger J, Semerádová D, Hlavinka P, Balek J, Dubrovský M, Kubu G, Štěpánek P, Thaler S, Možný M, Žalud Z (2011) Expected changes in agroclimatic conditions in Central Europe. Clim Chang 108:261–289

    Article  Google Scholar 

  • UNEP (2004) Decision VII/30 strategic plan: future evaluation of progress. In: Seventh conference of the parties to the convention on biological diversity, Kuala Lumpur

    Google Scholar 

  • Vačkář D, Melichar J, Lorencová E (2011) Ecosystem services of grasslands in the Czech Republic. Report to the agency for nature conservation and landscape protection of the Czech Republic and European Topic Centre on Biological Diversity, p 75

    Google Scholar 

  • Verburg P, Veldkamp T, Lesschen JP (2010) Exercises for the CLUE-S model. University Amsterdam. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.1688&rep=rep1&type=pdf. Accessed 2 Nov 2016

Download references

Acknowledgements

This work is a product of the Project CzechAdapt—System for Exchange of Information on Climate Change Impacts, Vulnerability and Adaptation Measures on the Territory of the Czech Republic (EHP-CZ02-OV-1-014-2014) which was supported by grant from Iceland, Liechtenstein and Norway and by the Technological Agency of the Czech Republic No. TD03000093. This work was also supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), grant number LO1415. Habitat mapping layer provided by the Nature Conservation Agency of the Czech Republic was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Cudlín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cudlín, P., Cudlín, O., Štěrbová, L., Pechanec, V., Purkyt, J. (2017). The Projection of Global and Regional Climate Change Models into Selected Ecosystem Functions and Services (Case Study Czech Republic). In: Westra, L., Gray, J., Gottwald, FT. (eds) The Role of Integrity in the Governance of the Commons. Springer, Cham. https://doi.org/10.1007/978-3-319-54392-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54392-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54391-8

  • Online ISBN: 978-3-319-54392-5

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics