Skip to main content

Calcium Biomineralizations Associated with Bioclastic Deposits in Coastal Pedostratigraphic Sequences of the Southeastern Pampean Plain, Argentina

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

The biomineralization process is genetically controlled, and it is the result of the metabolic activity of different organisms . Microorganisms , plants and animals produce calcium biomineralizations , calcium oxalates and carbonates being the most representative. The Quaternary pedosedimentary sequences of the southeastern coast of Buenos Aires province evolved from bioclastic and loess sediments, reworked by water and/or wind action . Calcium biomineralizations play an important role in the development of soils and contribute to differentiate sedimentary levels affected by pedogenesis . This work aims to characterize calcium biomineralizations in bioclastic , loessic and fluvio-eolian pedosedimentary sequences , typical of coastal environments of the southeastern Buenos Aires province . Modal soil profiles were defined in pedosedimentary sequences of the fluvio-eolian and coastal plains , in which disturbed and undisturbed samples were analyzed. Samples were analyzed at different scales of resolution: mesoscopic , microscopic and submicroscopic , using optical microscopy and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) . Organic matter content , pH , particle size distribution , mineralogy and calcium content were also quantified. Three geopedological units were differentiated in a sequence developed on loess mantle deposits: dunes and interdunes , coastal lagoon/paleo-coastal lagoon and shell ridges . In soils with incipient development, calcium biomineralizations are scarce, mainly associated with isolated bioclasts . In soils with more pedological development , bioclasts are affected by bioerosion through microorganism action (fungi and algae ), and subsequently calcium re-precipitated as secondary oxalates and carbonates (biomineralizations ). These biomineralizations also weakly add or bind skeletal components , incorporating themselves into the matrix of soils and sediments . The type and diversity of calcium biomineralizations increase directly in relation with time and pedogenetic evolution ; so, these biomineralizations have been determinant in the origin, evolution and resistance to natural and anthropic degradation of the late Quaternary pedosedimentary sequences of southeastern Buenos Aires province , Argentina .

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   164.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   164.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15(12):959–970

    Article  Google Scholar 

  • Ameghino F (1908) Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapadmalal. Anales Museo Nacional Buenos Aires 10(3):343–428

    Google Scholar 

  • Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Z. Saugetierkunde 57:163–168

    Google Scholar 

  • Aragno M, Verrecchia E, Job D, Cailleau G, Braissant O, Khammar N, Ferro K, Mota M, Guggiari M, Martin G (2010) Calcium carbonate biomineralization in ferrallitic, tropical soils through the oxalate-carbonate pathway. Bulletin de la Société Suisse de Pédologie 30:127–130

    Google Scholar 

  • Arnott HJ (1982) Calcium oxalate (weddellite) crystals in forest litter. Scan Elect Microsc 3:1141–1149

    Google Scholar 

  • Bortolus A (2001) Marismas en el Atlántico sudoccidental. In: Iribarne O (ed) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, pp 83–92

    Google Scholar 

  • Brewer R (1964) Fabric and mineral analysis of soils. Wiley, New York, p 470

    Google Scholar 

  • Bullock P, Fedoroff N, Jongerious A, Stoops G, Tursina T, Babel U (1985) Handbook for soil thin section description. Wayne Research Publications, Wolverhampton, p 150

    Google Scholar 

  • Burgos JJ, Vidal AL (1951) Los climas de la República Argentina, según la nueva clasificación de Tornthwaite. Meteoros 1(1):3–32

    Google Scholar 

  • Coe HH, Osterrieth M, Fernández Honaine M (2014) Phytoliths and their applications. In: Gomes CH, Osterrieth M (eds) Synthesis of some phytolith studies in South America. Nova Publishers, New York, pp 1–26

    Google Scholar 

  • Coleman M (1993) Microbial processes: controls on the shape and composition of carbonate concretions. Marine Geol 113:127–140

    Article  Google Scholar 

  • Cortelezzi CR (1977) Dataciones de las formaciones marinas del Cuaternario en las proximidades de La Plata-Magdalena, Buenos Aires. LEMIT II 342:77–93

    Google Scholar 

  • Cromack K, Sollins P, Graunstein W, Spiedel K, Todd A, Spycher C, Todd R (1979) Calcium oxalate accumulation and soils weathering in mats of the hypogeous fungus Histerangium crassum. Soil Biochem 11:463–468

    Article  Google Scholar 

  • Dawis J, Freitas F (1970) Physiological and chemical methods of soil and water analysis. Soil Bull 10:39–51

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314. doi:10.3389/fmicb.2013.00314

    Article  Google Scholar 

  • Espinosa M (1994) Diatom paleoecology of the Mar Chiquita lagoon delta, Argentina. J Paleolimnol 10:17–23

    Article  Google Scholar 

  • Fasano J, Hernández M, Isla F, Schnack E (1982) Aspectos evolutivos y ambientales de la Laguna Mar Chiquita (provincia de Buenos Aires, Argentina). Oceanologica Acta, Nti SP, pp 285–292

    Google Scholar 

  • Fidalgo F, Colado U, De Francesco O (1973) Sobre ingresiones marinas cuaternarias en los partidos de Castelli, Chascomús y Magdalena (provincia de Buenos Aires). In: V Congreso Geologico Argentino, Buenos Aires, vol 3, pp 227–240

    Google Scholar 

  • Fidalgo F, Riggi J, Gentile R, Correa H, Porro N (1991) Los “sedimentos pampeanos” continentales en el ámbito sur bonaerense. Revista Asociación Geológica Argentina 46(3–4):239–256

    Google Scholar 

  • Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  Google Scholar 

  • Frenguelli J (1935) Diatomeas de la Laguna Mar Chiquita al norte de Mar del Plata (Buenos Aires). Notas Museo de La Plata 1:121–140

    Google Scholar 

  • Frenguelli J (1950) Rasgos generales de la morfología y la geología de la Provincia de Buenos Aires. LEMIT 2(33):72

    Google Scholar 

  • Galehouse JS (1971) Sedimentation analysis. In: Carver J (ed) Procedures in sedimentary petrology. Wisconsin, Wiley Interscience, USA, pp 69–94

    Google Scholar 

  • Genise JF, Poire DG (1998) Icnofósiles: estudio y aplicación. Tercera Reunión Argentina de Icnología and Primera Reunión de Icnología del Mercosur. Cuadernillo de apuntes, p 92

    Google Scholar 

  • Graustein WC, Cromack K, Sollins P (1977) Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles. Science 198:1252–1254

    Article  Google Scholar 

  • Horner H, Tiffani L, Cody A (1983) Formation of oxalate crystal associated with apothecia of the Discomycete Dasycypha capitata. Mycologia 75(3):423–435

    Article  Google Scholar 

  • Ibáñez J, de Alba S, García Álvarez A (2000) Una disciplina en crisis: bases para un cambio de paradigma en edafología (el suelo, su clasificación e inventario). XVIII Congreso Argentino de la Ciencia del Suelo, Mar del Plata. CD

    Google Scholar 

  • Ingram RL (1971) Sieve Analysis. In: Carver J (ed) Procedures in sedimentary petrology. Wisconsin, Wiley Interscience, USA, pp 41–68

    Google Scholar 

  • Isacch JP (2001) Mapa de vegetación de la Reserva Mar Chiquita. In: Iribarne O (eds) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, pp 79–80

    Google Scholar 

  • Isla F (1989) Holocene sea-level fluctuations in the southern hemisphere. Quat Sci Rev 8:359–368

    Article  Google Scholar 

  • Iwanoff LL (1906) Ein Wasserhaltiges Calcium Carbonat Aussen Umgebungen von Nowo-Alexandria (guv. Lublin). Annalen der Geologie und Mineralogte der Russland 8:23–25.

    Google Scholar 

  • Jahren AH (1996) How and why do phytoliths form? Biomineralization. Phytolitharien Bull 9:2–10

    Google Scholar 

  • James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J Sed Petrol 42(4):817–836

    Google Scholar 

  • Jenny L (1941) Factors of soils formation. McGraw Hill Book Company, New York

    Google Scholar 

  • Jones B (1995) Processes associated with microbial biofilms in the Twilight zone of caves: example from the Cayman Islands. J Sediment Res 65(3):552–560

    Google Scholar 

  • Klappa CF (1979) Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. J Sediment Petrol 49(3):955–968

    Article  Google Scholar 

  • Klappa C (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629

    Article  Google Scholar 

  • Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) TEM study of intracellular and extracellular calcium oxalate accumulation of ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9:163–166

    Google Scholar 

  • Loisy C, Verrecchia E, Dufour P (1999) Microbial origin pedogenic micrite associated with a carbonate paleosol (Champagne, France). Sediment Geol 126:193–204

    Article  Google Scholar 

  • Lowenstam R (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  • Mitsch S, Gosselink J (1993) Wetlands. Van Nostrand Reinhold (eds) New York

    Google Scholar 

  • Osterrieth ML (1998) Paleosols and their relation to sea level changes during the Late Quaternary in Mar Chiquita, Buenos Aires, Argentina. Quat Int 43–44

    Google Scholar 

  • Osterrieth ML (2004) Biominerales y Biomineralizaciones. Cristalografía de Suelos. Sociedad Mejicana de Cristalografía (ed), pp 206–218

    Google Scholar 

  • Osterrieth ML (2005) Biomineralizaciones de hierro y calcio, su rol en procesos biogeoquímicos de secuencias sedimentarias del sudeste bonaerense. XVI Congreso Geológico Argentino 3:255–262

    Google Scholar 

  • Osterrieth ML, Martínez G (1993) Paleosols on Late Cainozoic Sequences in the Northeastern side of Tandilia Range, Buenos Aires, Argentina. Quat Int 17:57–65

    Article  Google Scholar 

  • Osterrieth ML, Oyarbide F (1998) Calcium oxalate biominerals generated by fungi in Argiudolls of the Pampean plains, Argentina. A problem? II International Meeting of Phytolith Research 2:43

    Google Scholar 

  • Osterrieth M, Schnack E (1984) El perfil de Mar de Cobo (partido de Mar Chiquita, provincia de Buenos Aires). Características de sus paleosuelos y posibles correlaciones. Symposium on Oscilaciones del nivel del mar durante el último hemiciclo deglacial en la Argentina, pp 101–117

    Google Scholar 

  • Osterrieth M, Oyarbide F, Bordas V (1998) Biominerales de oxalato de calcio en suelos de Laguna de Los Padres, Buenos Aires. Revista Argentina Ciencias Suelo 18(1):1–9

    Google Scholar 

  • Oyarbide RF, Osterrieth M (2000) Presencia y desarrollo de biominerales de calcio de origen fúngico en suelos del sudeste de la provincia de Buenos Aires (Argentina). Congreso Universitario Internacional de Edafología Nicolás Aguilera 1–2:81–88

    Google Scholar 

  • Oyarbide F, Osterrieth M, Cabello M (2001) Trichoderma koningii as a biomineralizing fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina). Microbiol Res 156:113–119

    Article  Google Scholar 

  • Perry C (1999) Biofilm-related calcification, sediment trapping and constructive micrite envelopes: a criterion for the recognition of ancient grass-bed environments? Sedimentology 46:33–45

    Article  Google Scholar 

  • Schmidt C (1847) Ueber das Verkommen des oxalsauren Kalks in den einfachsten Zellenpflanzen und dem Secret der Schleimhaute. Ann. Chem. Pharm. (Heidelberg) 61:288–306

    Google Scholar 

  • Schnack EJ, Gardenal M (1979) Holocene transgressive deposits, Mar Chiquita lagoon coast, Buenos Aires province, Argentina. Proc. Int. Symposium on coastal evolution in the quaternary, pp 419–425

    Google Scholar 

  • Schnack EJ, Fasano JL, Isla FI (1982) The evolution of Mar Chiquita Lagoon, Province of Buenos Aires, Argentina. In: Colquhom DJ (ed) Holocene sea—level fluctuations: magnitudes and causes. IGCP 61, University of South Carolina, Columbia, pp 143–155

    Google Scholar 

  • Schnack EJ, Alvarez, J, Cionchi J (1984) El carácter erosivo de la línea de costa entre Mar Chiquita y Miramar, provincia de Buenos Aires. Symposium Oscilaciones del Nivel del Mar durante el último Hemiciclo Deglacial en la Argentina, pp 118–130

    Google Scholar 

  • Simkiss K, Wilbur K (1989) Biomineralization: cells biology and mineral deposition. Acad. Press Inc., New York, p 327

    Google Scholar 

  • Simonson RW (1959) Outline of a generalized theory of soil genesis. Soil Sci Soc Am Proc 23:152–156

    Article  Google Scholar 

  • Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. Department of Agriculture, USA, p 631

    Google Scholar 

  • Stoops GJ (1976) On the nature of “lublinite” from Hollanta (Turkey). Am Mineralogist 61:172

    Google Scholar 

  • Teruggi ME (1959) Las arenas de la costa de la provincia de Buenos Aires entre Cabo San Antonio y Bahía Blanca. LEMIT II, 77, La Plata

    Google Scholar 

  • Tricart JL (1973) Geomorfología de la pampa deprimida. INTA 12:202

    Google Scholar 

  • Verrecchia E (1990) Lithodiagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semi-arid calcretes, Nazareth, Israel. Geomicrobiol J 8:89–101

    Article  Google Scholar 

  • Tuason MMS, Arocena JM (2009) Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Appl Environ Microbiol 75(22):7079–7085

    Article  Google Scholar 

  • Verrecchia E (1994) L’origine biologique et superficielle des croütes zonaires. Bull Soc Geol France 165(6):583–592

    Google Scholar 

  • Verrecchia E, Verrecchia K (1994) Needle-Fiber calcite: review and classification. J Sediment Res 64(3):650–664

    Google Scholar 

  • Verrecchia E, Yair A, Ribier J, Kidron G, Rolko-Verrecchia KE (1993) Le role des Cyanobactéries dans la fixation des sols sableux désertiques: un exemple pris dans le désert de Néguev (Nizzana area, Israel). Palynosciences 2:255–266

    Google Scholar 

  • Verrecchia E, Dumont JL, Verecchia K (1995) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel. J Sediment Petrol 65:1060–1066

    Article  Google Scholar 

  • Verrecchia E, Van Grootel G, Guillemet G (1996) Classification of Chitinozoa (Llandoverian, Canada) using image analysis. Microscopy Microanal Microstruct 5–6:461–466

    Article  Google Scholar 

  • Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: Gadd GM (eds) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 289–310

    Google Scholar 

  • Vervoorst F (1967) La vegetación de la República Argentina. Vll. Las comunidades vegetales de la depresión del Río Salado, Provincia de Buenos Aires. INTA. Buenos Aires

    Google Scholar 

  • Violante R (1992) Ambientes sedimentarios asociados a un sistema de barrera litoral del Holoceno en la llanura costera al sur de Villa Gesell, Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 47(2):201–214

    Google Scholar 

  • Violante RA, Parker G, Cavallotto JL (2001) Evolución de las llanuras costeras del este bonaerense entre la Bahía Samborombón y la Laguna Mar Chiquita durante el Holoceno. Revista Asociación Geológica Argentina 56(1):51–66

    Google Scholar 

  • Walkley B (1965) In: Black C (ed) Methods of soil analysis. American Society of Agronomy, pp 1372–1375

    Google Scholar 

  • Warme J (1975) Boring as trace fossils and the process of marine bioerosion. In: Fray RY (ed) Springer, New York, pp 191–229

    Google Scholar 

  • Wright VP (1984) The significance of needle-fibre calcite in Lower Carboniferous palaesol. Geol J 19:23–32

    Article  Google Scholar 

  • Wright VP (1986) Pyrite and the drowning of a paleosol. Geol J 21:139–149

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Universidad Nacional de Mar del Plata (EXA 741/15), the National Agency for Science and Technology Promotion of Argentina (ANPCyT, BID-PICT N°1583). The authors are especially grateful to Ing. José Vila for their assistance with SEM-EDXS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Osterrieth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Osterrieth, M., Borrelli, N., Frayssinet, C., Frayssinet, L., Cresta, J. (2017). Calcium Biomineralizations Associated with Bioclastic Deposits in Coastal Pedostratigraphic Sequences of the Southeastern Pampean Plain, Argentina. In: Rabassa, J. (eds) Advances in Geomorphology and Quaternary Studies in Argentina. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-54371-0_11

Download citation

Publish with us

Policies and ethics