Abstract
The biomineralization process is genetically controlled, and it is the result of the metabolic activity of different organisms . Microorganisms , plants and animals produce calcium biomineralizations , calcium oxalates and carbonates being the most representative. The Quaternary pedosedimentary sequences of the southeastern coast of Buenos Aires province evolved from bioclastic and loess sediments, reworked by water and/or wind action . Calcium biomineralizations play an important role in the development of soils and contribute to differentiate sedimentary levels affected by pedogenesis . This work aims to characterize calcium biomineralizations in bioclastic , loessic and fluvio-eolian pedosedimentary sequences , typical of coastal environments of the southeastern Buenos Aires province . Modal soil profiles were defined in pedosedimentary sequences of the fluvio-eolian and coastal plains , in which disturbed and undisturbed samples were analyzed. Samples were analyzed at different scales of resolution: mesoscopic , microscopic and submicroscopic , using optical microscopy and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) . Organic matter content , pH , particle size distribution , mineralogy and calcium content were also quantified. Three geopedological units were differentiated in a sequence developed on loess mantle deposits: dunes and interdunes , coastal lagoon/paleo-coastal lagoon and shell ridges . In soils with incipient development, calcium biomineralizations are scarce, mainly associated with isolated bioclasts . In soils with more pedological development , bioclasts are affected by bioerosion through microorganism action (fungi and algae ), and subsequently calcium re-precipitated as secondary oxalates and carbonates (biomineralizations ). These biomineralizations also weakly add or bind skeletal components , incorporating themselves into the matrix of soils and sediments . The type and diversity of calcium biomineralizations increase directly in relation with time and pedogenetic evolution ; so, these biomineralizations have been determinant in the origin, evolution and resistance to natural and anthropic degradation of the late Quaternary pedosedimentary sequences of southeastern Buenos Aires province , Argentina .
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15(12):959–970
Ameghino F (1908) Las formaciones sedimentarias de la región litoral de Mar del Plata y Chapadmalal. Anales Museo Nacional Buenos Aires 10(3):343–428
Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Z. Saugetierkunde 57:163–168
Aragno M, Verrecchia E, Job D, Cailleau G, Braissant O, Khammar N, Ferro K, Mota M, Guggiari M, Martin G (2010) Calcium carbonate biomineralization in ferrallitic, tropical soils through the oxalate-carbonate pathway. Bulletin de la Société Suisse de Pédologie 30:127–130
Arnott HJ (1982) Calcium oxalate (weddellite) crystals in forest litter. Scan Elect Microsc 3:1141–1149
Bortolus A (2001) Marismas en el Atlántico sudoccidental. In: Iribarne O (ed) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, pp 83–92
Brewer R (1964) Fabric and mineral analysis of soils. Wiley, New York, p 470
Bullock P, Fedoroff N, Jongerious A, Stoops G, Tursina T, Babel U (1985) Handbook for soil thin section description. Wayne Research Publications, Wolverhampton, p 150
Burgos JJ, Vidal AL (1951) Los climas de la República Argentina, según la nueva clasificación de Tornthwaite. Meteoros 1(1):3–32
Coe HH, Osterrieth M, Fernández Honaine M (2014) Phytoliths and their applications. In: Gomes CH, Osterrieth M (eds) Synthesis of some phytolith studies in South America. Nova Publishers, New York, pp 1–26
Coleman M (1993) Microbial processes: controls on the shape and composition of carbonate concretions. Marine Geol 113:127–140
Cortelezzi CR (1977) Dataciones de las formaciones marinas del Cuaternario en las proximidades de La Plata-Magdalena, Buenos Aires. LEMIT II 342:77–93
Cromack K, Sollins P, Graunstein W, Spiedel K, Todd A, Spycher C, Todd R (1979) Calcium oxalate accumulation and soils weathering in mats of the hypogeous fungus Histerangium crassum. Soil Biochem 11:463–468
Dawis J, Freitas F (1970) Physiological and chemical methods of soil and water analysis. Soil Bull 10:39–51
Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314. doi:10.3389/fmicb.2013.00314
Espinosa M (1994) Diatom paleoecology of the Mar Chiquita lagoon delta, Argentina. J Paleolimnol 10:17–23
Fasano J, Hernández M, Isla F, Schnack E (1982) Aspectos evolutivos y ambientales de la Laguna Mar Chiquita (provincia de Buenos Aires, Argentina). Oceanologica Acta, Nti SP, pp 285–292
Fidalgo F, Colado U, De Francesco O (1973) Sobre ingresiones marinas cuaternarias en los partidos de Castelli, Chascomús y Magdalena (provincia de Buenos Aires). In: V Congreso Geologico Argentino, Buenos Aires, vol 3, pp 227–240
Fidalgo F, Riggi J, Gentile R, Correa H, Porro N (1991) Los “sedimentos pampeanos” continentales en el ámbito sur bonaerense. Revista Asociación Geológica Argentina 46(3–4):239–256
Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427
Frenguelli J (1935) Diatomeas de la Laguna Mar Chiquita al norte de Mar del Plata (Buenos Aires). Notas Museo de La Plata 1:121–140
Frenguelli J (1950) Rasgos generales de la morfología y la geología de la Provincia de Buenos Aires. LEMIT 2(33):72
Galehouse JS (1971) Sedimentation analysis. In: Carver J (ed) Procedures in sedimentary petrology. Wisconsin, Wiley Interscience, USA, pp 69–94
Genise JF, Poire DG (1998) Icnofósiles: estudio y aplicación. Tercera Reunión Argentina de Icnología and Primera Reunión de Icnología del Mercosur. Cuadernillo de apuntes, p 92
Graustein WC, Cromack K, Sollins P (1977) Calcium oxalate: occurrence in soils and effects on nutrient and geochemical cycles. Science 198:1252–1254
Horner H, Tiffani L, Cody A (1983) Formation of oxalate crystal associated with apothecia of the Discomycete Dasycypha capitata. Mycologia 75(3):423–435
Ibáñez J, de Alba S, García Álvarez A (2000) Una disciplina en crisis: bases para un cambio de paradigma en edafología (el suelo, su clasificación e inventario). XVIII Congreso Argentino de la Ciencia del Suelo, Mar del Plata. CD
Ingram RL (1971) Sieve Analysis. In: Carver J (ed) Procedures in sedimentary petrology. Wisconsin, Wiley Interscience, USA, pp 41–68
Isacch JP (2001) Mapa de vegetación de la Reserva Mar Chiquita. In: Iribarne O (eds) Reserva de la biosfera Mar Chiquita: características físicas, biológicas y ecológicas, pp 79–80
Isla F (1989) Holocene sea-level fluctuations in the southern hemisphere. Quat Sci Rev 8:359–368
Iwanoff LL (1906) Ein Wasserhaltiges Calcium Carbonat Aussen Umgebungen von Nowo-Alexandria (guv. Lublin). Annalen der Geologie und Mineralogte der Russland 8:23–25.
Jahren AH (1996) How and why do phytoliths form? Biomineralization. Phytolitharien Bull 9:2–10
James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J Sed Petrol 42(4):817–836
Jenny L (1941) Factors of soils formation. McGraw Hill Book Company, New York
Jones B (1995) Processes associated with microbial biofilms in the Twilight zone of caves: example from the Cayman Islands. J Sediment Res 65(3):552–560
Klappa CF (1979) Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment. J Sediment Petrol 49(3):955–968
Klappa C (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629
Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) TEM study of intracellular and extracellular calcium oxalate accumulation of ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9:163–166
Loisy C, Verrecchia E, Dufour P (1999) Microbial origin pedogenic micrite associated with a carbonate paleosol (Champagne, France). Sediment Geol 126:193–204
Lowenstam R (1981) Minerals formed by organisms. Science 211:1126–1131
Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York
Mitsch S, Gosselink J (1993) Wetlands. Van Nostrand Reinhold (eds) New York
Osterrieth ML (1998) Paleosols and their relation to sea level changes during the Late Quaternary in Mar Chiquita, Buenos Aires, Argentina. Quat Int 43–44
Osterrieth ML (2004) Biominerales y Biomineralizaciones. Cristalografía de Suelos. Sociedad Mejicana de Cristalografía (ed), pp 206–218
Osterrieth ML (2005) Biomineralizaciones de hierro y calcio, su rol en procesos biogeoquímicos de secuencias sedimentarias del sudeste bonaerense. XVI Congreso Geológico Argentino 3:255–262
Osterrieth ML, Martínez G (1993) Paleosols on Late Cainozoic Sequences in the Northeastern side of Tandilia Range, Buenos Aires, Argentina. Quat Int 17:57–65
Osterrieth ML, Oyarbide F (1998) Calcium oxalate biominerals generated by fungi in Argiudolls of the Pampean plains, Argentina. A problem? II International Meeting of Phytolith Research 2:43
Osterrieth M, Schnack E (1984) El perfil de Mar de Cobo (partido de Mar Chiquita, provincia de Buenos Aires). Características de sus paleosuelos y posibles correlaciones. Symposium on Oscilaciones del nivel del mar durante el último hemiciclo deglacial en la Argentina, pp 101–117
Osterrieth M, Oyarbide F, Bordas V (1998) Biominerales de oxalato de calcio en suelos de Laguna de Los Padres, Buenos Aires. Revista Argentina Ciencias Suelo 18(1):1–9
Oyarbide RF, Osterrieth M (2000) Presencia y desarrollo de biominerales de calcio de origen fúngico en suelos del sudeste de la provincia de Buenos Aires (Argentina). Congreso Universitario Internacional de Edafología Nicolás Aguilera 1–2:81–88
Oyarbide F, Osterrieth M, Cabello M (2001) Trichoderma koningii as a biomineralizing fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina). Microbiol Res 156:113–119
Perry C (1999) Biofilm-related calcification, sediment trapping and constructive micrite envelopes: a criterion for the recognition of ancient grass-bed environments? Sedimentology 46:33–45
Schmidt C (1847) Ueber das Verkommen des oxalsauren Kalks in den einfachsten Zellenpflanzen und dem Secret der Schleimhaute. Ann. Chem. Pharm. (Heidelberg) 61:288–306
Schnack EJ, Gardenal M (1979) Holocene transgressive deposits, Mar Chiquita lagoon coast, Buenos Aires province, Argentina. Proc. Int. Symposium on coastal evolution in the quaternary, pp 419–425
Schnack EJ, Fasano JL, Isla FI (1982) The evolution of Mar Chiquita Lagoon, Province of Buenos Aires, Argentina. In: Colquhom DJ (ed) Holocene sea—level fluctuations: magnitudes and causes. IGCP 61, University of South Carolina, Columbia, pp 143–155
Schnack EJ, Alvarez, J, Cionchi J (1984) El carácter erosivo de la línea de costa entre Mar Chiquita y Miramar, provincia de Buenos Aires. Symposium Oscilaciones del Nivel del Mar durante el último Hemiciclo Deglacial en la Argentina, pp 118–130
Simkiss K, Wilbur K (1989) Biomineralization: cells biology and mineral deposition. Acad. Press Inc., New York, p 327
Simonson RW (1959) Outline of a generalized theory of soil genesis. Soil Sci Soc Am Proc 23:152–156
Soil Survey Staff (1996) Keys to soil taxonomy, 7th edn. Department of Agriculture, USA, p 631
Stoops GJ (1976) On the nature of “lublinite” from Hollanta (Turkey). Am Mineralogist 61:172
Teruggi ME (1959) Las arenas de la costa de la provincia de Buenos Aires entre Cabo San Antonio y Bahía Blanca. LEMIT II, 77, La Plata
Tricart JL (1973) Geomorfología de la pampa deprimida. INTA 12:202
Verrecchia E (1990) Lithodiagenetic implications of the calcium oxalate-carbonate biogeochemical cycle in semi-arid calcretes, Nazareth, Israel. Geomicrobiol J 8:89–101
Tuason MMS, Arocena JM (2009) Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Appl Environ Microbiol 75(22):7079–7085
Verrecchia E (1994) L’origine biologique et superficielle des croütes zonaires. Bull Soc Geol France 165(6):583–592
Verrecchia E, Verrecchia K (1994) Needle-Fiber calcite: review and classification. J Sediment Res 64(3):650–664
Verrecchia E, Yair A, Ribier J, Kidron G, Rolko-Verrecchia KE (1993) Le role des Cyanobactéries dans la fixation des sols sableux désertiques: un exemple pris dans le désert de Néguev (Nizzana area, Israel). Palynosciences 2:255–266
Verrecchia E, Dumont JL, Verecchia K (1995) Role of calcium oxalate biomineralization by fungi in the formation of calcretes: a case study from Nazareth, Israel. J Sediment Petrol 65:1060–1066
Verrecchia E, Van Grootel G, Guillemet G (1996) Classification of Chitinozoa (Llandoverian, Canada) using image analysis. Microscopy Microanal Microstruct 5–6:461–466
Verrecchia EP, Braissant O, Cailleau G (2006) The oxalate-carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In: Gadd GM (eds) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 289–310
Vervoorst F (1967) La vegetación de la República Argentina. Vll. Las comunidades vegetales de la depresión del Río Salado, Provincia de Buenos Aires. INTA. Buenos Aires
Violante R (1992) Ambientes sedimentarios asociados a un sistema de barrera litoral del Holoceno en la llanura costera al sur de Villa Gesell, Provincia de Buenos Aires. Revista de la Asociación Geológica Argentina 47(2):201–214
Violante RA, Parker G, Cavallotto JL (2001) Evolución de las llanuras costeras del este bonaerense entre la Bahía Samborombón y la Laguna Mar Chiquita durante el Holoceno. Revista Asociación Geológica Argentina 56(1):51–66
Walkley B (1965) In: Black C (ed) Methods of soil analysis. American Society of Agronomy, pp 1372–1375
Warme J (1975) Boring as trace fossils and the process of marine bioerosion. In: Fray RY (ed) Springer, New York, pp 191–229
Wright VP (1984) The significance of needle-fibre calcite in Lower Carboniferous palaesol. Geol J 19:23–32
Wright VP (1986) Pyrite and the drowning of a paleosol. Geol J 21:139–149
Acknowledgements
This study was financially supported by the Universidad Nacional de Mar del Plata (EXA 741/15), the National Agency for Science and Technology Promotion of Argentina (ANPCyT, BID-PICT N°1583). The authors are especially grateful to Ing. José Vila for their assistance with SEM-EDXS analysis.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Osterrieth, M., Borrelli, N., Frayssinet, C., Frayssinet, L., Cresta, J. (2017). Calcium Biomineralizations Associated with Bioclastic Deposits in Coastal Pedostratigraphic Sequences of the Southeastern Pampean Plain, Argentina. In: Rabassa, J. (eds) Advances in Geomorphology and Quaternary Studies in Argentina. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-54371-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-54371-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54370-3
Online ISBN: 978-3-319-54371-0
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)
