Skip to main content

Gene Therapy for Neoplastic Hematology in Transplant Setting

  • Chapter
  • First Online:
Cell and Gene Therapies

Abstract

Traditionally, the transfer of allogeneic cells and the replacement of the immune system using allogeneic hematopoietic cell transplant (HCT) has been the only therapy that has proven to be curative for hematological malignancies. The search for a more specific and, hopefully, less toxic therapeutic approach using immune system cells that are redirected toward the target of interest is needed and ongoing. This could be potentially accomplished by harnessing modern molecular biology, gene therapy, and cellular engineering techniques. Gene therapy for hematologic malignancies and other diseases is rapidly becoming one of the most actively studied and awaited treatment alternatives. A range of therapeutic strategies have shown significant progress over the past few years; these include approaches based on immune genes, suppressor genes, or gene replacements, gene-directed enzyme-prodrug/suicide gene therapies, gene suppression, or oncolytic viral and non-viral therapies. In this chapter, we will review the historical context of gene therapy and cellular engineering development for the treatment of hematological malignancies and, particularly, in the setting of hematopoietic cell transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahi YS, Bangari DS, Mittal SK (2011) Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther 11(4):307–320

    Article  CAS  Google Scholar 

  • Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341(6148):1233151

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  • Bates PJ, Laber DA, Miller DM, Thomas SD, Trent JO (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86(3):151–164

    Article  CAS  Google Scholar 

  • Bender E (2016) Gene therapy: industrial strength. Nature 537(7619):S57–S59

    Article  CAS  Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1954) Quantitative studies on tissue transplantation immunity. II. The origin, strength and duration of actively and adoptively acquired immunity. Proc R Soc Lond Ser B Biol Sci 143:58–80

    Article  CAS  Google Scholar 

  • Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M et al (1995) T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270(5235):475–480

    Article  CAS  Google Scholar 

  • Borrello IM, Levitsky HI, Stock W, Sher D, Qin L, DeAngelo DJ et al (2009) Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood 114(9):1736–1745

    Article  CAS  Google Scholar 

  • Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828

    Article  CAS  Google Scholar 

  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5(177):177ra38

    Article  Google Scholar 

  • Brudno JN, Somerville RPT, Shi V, Rose JJ, Halverson DC, Fowler DH et al (2016) Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 34(10):1112–1121

    Article  CAS  Google Scholar 

  • Buckner CD, Epstein RB, Rudolph RH, Clift RA, Storb R, Thomas ED (1970) Allogeneic marrow engraftment following whole body irradiation in a patient with leukemia. Blood 35(6):741–750

    CAS  PubMed  Google Scholar 

  • Büning H (2013) Gene therapy enters the pharma market: the short story of a long journey. EMBO Mol Med 5(1):1–3

    Article  Google Scholar 

  • Casadevall A, Pirofski LA (2003) Exploiting the redundancy in the immune system: vaccines can mediate protection by eliciting ‘unnatural’ immunity. J Exp Med 197(11):1401–1404

    Article  CAS  Google Scholar 

  • Castro JE, Cantwell MJ, Prussak CE, Bole J, Wierda WG, Kipps TJ (2003) Long-term follow up of chronic lymphocytic leukemia patients treated with CD40-ligand (CD154) gene therapy. Blood 102(11):491a

    Google Scholar 

  • Castro JE, Sandoval-Sus JD, Melo-Cardenas J, Darrah D, Urquiza M, Pakbaz RS et al (2009) Phase I study of intranodal direct injection of adenovirus encoding recombinant CD40-ligand (Ad-ISF35) in patients with chronic lymphocytic leukemia. J Clin Oncol 27(15s):3003

    Google Scholar 

  • Castro JE, Melo-Cardenas J, Urquiza M, Barajas-Gamboa JS, Pakbaz RS, Kipps TJ (2012) Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res 72(12):2937–2948

    Article  CAS  Google Scholar 

  • Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G, Miselli F et al (2010) High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116(25):5507–5517

    Article  CAS  Google Scholar 

  • Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM et al (2013) Transferred WT1-reactive CD8+ T cells can mediate Antileukemic activity and persist in post-transplant patients. Sci Transl Med 5(174):174ra27

    Article  Google Scholar 

  • Chen WX, Hu Q, Qiu MT, Zhong SL, Xu JJ, Tang JH et al (2013) miR-221/222: promising biomarkers for breast cancer. Tumour Biol 34(3):1361–1370

    Article  CAS  Google Scholar 

  • Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7(2):68–74

    Article  Google Scholar 

  • Cooray S, Howe SJ, Thrasher AJ (2012) Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol 507:29–57

    Article  CAS  Google Scholar 

  • Cruz CR, Micklethwaite KP, Savoldo B, Ramos CA, Lam S, Ku S et al (2013) Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122(17):2965–2973

    Article  CAS  Google Scholar 

  • Das M, Mohanty C, Sahoo SK (2009) Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 6(3):285–304

    Article  CAS  Google Scholar 

  • Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra25

    Article  Google Scholar 

  • Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4):583–593

    Article  CAS  Google Scholar 

  • Decker WK, Safdar A (2009) Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley's legacy revisited. Cytokine Growth Factor Rev 20(4):271–281

    Article  Google Scholar 

  • Deniger DC, Yu J, Huls MH, Figliola MJ, Mi T, Maiti SN et al (2015) Sleeping beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS One 10(6):e0128151

    Article  Google Scholar 

  • Douglas JT (2004) Adenovirus-mediated gene delivery: an overview. Methods Mol Biol 246:3–14

    CAS  PubMed  Google Scholar 

  • Frumento G, Piazza T, Di Carlo E, Ferrini S (2006) Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets 6(3):233–237

    Article  Google Scholar 

  • Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE et al (2008) Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci U S A 105(8):3047–3052

    Article  CAS  Google Scholar 

  • Gillet JP, Macadangdang B, Fathke RL, Gottesman MM, Kimchi-Sarfaty C (2009) The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 542:5–54

    Article  CAS  Google Scholar 

  • Greco R, Oliveira G, Stanghellini MT, Vago L, Bondanza A, Peccatori J et al (2015) Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 6:95

    Article  Google Scholar 

  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  Google Scholar 

  • Harris DT, Kranz DM (2016) Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptors. Trends Pharmacol Sci 37(3):220–230

    Article  CAS  Google Scholar 

  • Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y et al (2013) Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 21(11):2087–2101

    Article  CAS  Google Scholar 

  • Ho VT, Vanneman M, Kim H, Sasada T, Kang YJ, Pasek M et al (2009) Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proc Natl Acad Sci U S A 106(37):15825–15830

    Article  CAS  Google Scholar 

  • Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Investig 118(9):3143–3150

    Article  CAS  Google Scholar 

  • Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33(6):1126–1133

    Article  CAS  Google Scholar 

  • Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR et al (2010) Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant 16(9):1245–1256

    Article  CAS  Google Scholar 

  • Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3(95):95ra73

    Article  CAS  Google Scholar 

  • Kamen A, Henry O (2004) Development and optimization of an adenovirus production process. J Gene Med 6(Suppl 1):S184–S192

    Article  CAS  Google Scholar 

  • Kato K, Cantwell MJ, Sharma S, Kipps TJ (1998) Gene transfer of CD40-ligand induces autologous immune recognition of chronic lymphocytic leukemia B cells. J Clin Investig 101:1133–1141

    Article  CAS  Google Scholar 

  • Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA et al (2010) Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116(20):4099–4102

    Article  CAS  Google Scholar 

  • Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119(12):2709–2720

    Article  CAS  Google Scholar 

  • Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549

    Article  CAS  Google Scholar 

  • Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528

    Article  CAS  Google Scholar 

  • Linnemann AK, Krawetz SA (2009) Silencing by nuclear matrix attachment distinguishes cell-type specificity: association with increased proliferation capacity. Nucleic Acids Res 37(9):2779–2788

    Article  CAS  Google Scholar 

  • Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM et al (2017) Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther 25(1):285–295

    Article  CAS  Google Scholar 

  • Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  Google Scholar 

  • Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518

    Article  CAS  Google Scholar 

  • Mitchison NA (1955) Studies on the immunological response to foreign tumor transplants in the mouse. I. The role of lymph node cells in conferring immunity by adoptive transfer. J Exp Med 102(2):157–177

    Article  CAS  Google Scholar 

  • Mojica FJ, Juez G, Rodríguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9(3):613–621

    Article  CAS  Google Scholar 

  • Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60(2):174–182

    Article  CAS  Google Scholar 

  • Moreno AM, Mali P (2017) Therapeutic genome engineering via CRISPR-Cas systems. Wiley Interdiscip Rev Syst Biol Med 9(4):e1380

    Article  Google Scholar 

  • Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365

    Article  CAS  Google Scholar 

  • Ott MG, Seger R, Stein S, Siler U, Hoelzer D, Grez M (2007) Advances in the treatment of chronic granulomatous disease by gene therapy. Curr Gene Ther 7(3):155–161

    Article  CAS  Google Scholar 

  • Pantuck AJ, van Ophoven A, Gitlitz BJ, Tso CL, Acres B, Squiban P et al (2004) Phase I trial of antigen-specific gene therapy using a recombinant vaccinia virus encoding MUC-1 and IL-2 in MUC-1-positive patients with advanced prostate cancer. J Immunother 27(3):240–253

    Article  CAS  Google Scholar 

  • Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139

    Article  Google Scholar 

  • Puntel M, GM AKM, Farrokhi C, Vanderveen N, Paran C, Appelhans A et al (2013) Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma. Toxicol Appl Pharmacol 268(3):318–330

    Article  CAS  Google Scholar 

  • Qasim W, Amrolia PJ, Samarasinghe S, Pule M (2015) First clinical application of talen engineered universal CAR19 T cells in B-ALL. Blood 126:2046

    Google Scholar 

  • Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K et al (2013) Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 21(11):2122–2129

    Article  CAS  Google Scholar 

  • Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS et al (2016) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164(4):770–779

    Article  CAS  Google Scholar 

  • Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222

    Article  CAS  Google Scholar 

  • Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Investig 121(5):1822–1826

    Article  CAS  Google Scholar 

  • Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17(5):767–777

    Article  CAS  Google Scholar 

  • Smith BD, Kasamon YL, Kowalski J, Gocke C, Murphy K, Miller CB et al (2010) K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate. Clin Cancer Res 16(1):338–347

    Article  CAS  Google Scholar 

  • Tani K (2016) Current status of ex vivo gene therapy for hematological disorders: a review of clinical trials in Japan around the world. Int J Hematol 104(1):42–72

    Article  CAS  Google Scholar 

  • Tey SK, Brenner MK (2007) The continuing contribution of gene marking to cell and gene therapy. Mol Ther 15(4):666–676

    Article  CAS  Google Scholar 

  • Thomas ED (1982) Allogeneic bone marrow transplantation for blood cell disorders. Birth Defects Orig Artic Ser 18(7):361–369

    CAS  PubMed  Google Scholar 

  • Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 112(6):2261–2271

    Article  CAS  Google Scholar 

  • Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG et al (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119(17):3940–3950

    Article  CAS  Google Scholar 

  • Tolba KA, Bowers WJ, Hilchey SP, Halterman MW, Howard DF, Giuliano RE et al (2001) Development of herpes simplex virus-1 amplicon-based immunotherapy for chronic lymphocytic leukemia. Blood 98(2):287–295

    Article  CAS  Google Scholar 

  • Vollweiler JL, Zielske SP, Reese JS, Gerson SL (2003) Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant 32(1):1–7

    Article  CAS  Google Scholar 

  • Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ (2000) CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 96(9):2917–2924

    CAS  PubMed  Google Scholar 

  • Wierda WG, Castro JE, Aguillon R, Sampath D, Jalayer A, McMannis J et al (2010) A phase I study of immune gene therapy for patients with CLL using a membrane-stable, humanized CD154. Leukemia 24(11):1893–1900

    Article  CAS  Google Scholar 

  • Xiao PJ, Lentz TB, Samulski RJ (2012) Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Ther Deliv 3(7):835–856

    Article  CAS  Google Scholar 

  • Yan Z, Zhang Y, Duan D, Engelhardt JF (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97(12):6716–6721

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Kipps .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro, J.E., Kipps, T.J. (2019). Gene Therapy for Neoplastic Hematology in Transplant Setting. In: Perales, MA., Abutalib, S., Bollard, C. (eds) Cell and Gene Therapies. Advances and Controversies in Hematopoietic Transplantation and Cell Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-54368-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54368-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54367-3

  • Online ISBN: 978-3-319-54368-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics