Skip to main content

Arsenic: Source, Occurrence, Cycle, and Detection

  • Chapter
  • First Online:

Abstract

Exposure to arsenic is one of the most perilous public health crises. Arsenic contamination in drinking water and food sources has many harmful effects on human health. More than 200 million people in different parts of the world are exposed to arsenic concentrations in drinking water with more than the recommended limit of 10 μg L−1. Several countries of the world are facing this crisis, acknowledging the adverse health implications and deterioration of quality of life due to arsenic toxicity. Properties of arsenic and its different species along with organic components that control its biogeochemical cycle are one of the most important aspects in addressing the issue. Several microorganisms play a crucial role in arsenic speciation in both anoxic and oxygen-rich environments. Furthermore, proper methodology (including appropriate field testing systems) for examination and management of arsenic is required. Thus, analysis of the arsenic content of water and other environmental samples as well as food stuffs is an important issue because it is directly correlated with key decision making regarding the maximum contaminant level. An integrated approach for understanding arsenic, its different chemical species, and their detection is required to properly mitigate the crisis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya SK (2002) Arsenic contamination in groundwater affecting major parts of southern West Bengal and parts of western Chhattisgarh: source and mobilization processes. Curr Sci 82:740–744

    Google Scholar 

  • Ahuja S (2008) Arsenic contamination of groundwater: mechanism, analysis, and remediation. John Wiley & Sons, Inc., Hoboken, NJ

    Book  Google Scholar 

  • Aide M, Beighley D, Dunn D (2016) Arsenic in the soil environment: a soil chemistry review. Intl J Appl Agri Res 11:1–28. ISSN 0973-2683

    Article  Google Scholar 

  • Akter KF, Owens G, Davey DE, Naidu R (2005) Arsenic speciation and toxicity in biological systems. Rev Environ Contam Toxicol 184:97–149

    CAS  Google Scholar 

  • Anderson LC, Bruland KW (1991) Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environ Sci Technol 25:420–424

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Crouzet C, Burnol A, Coulon S, Morin D, Joulian C (2012) Precipitation of arsenic sulphide from acidic water in a fixed-film bioreactor. Water Res 46:3923–3933

    Article  CAS  Google Scholar 

  • Bartrip PWJ (1994) How green was my valance?: environmental arsenic poisoning and the Victorian domestic ideal. Eng Histor Rev 109:891–913

    Article  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  Google Scholar 

  • Buchet JP, Lauwerys R, Roels H (1981b) Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. Int Arch Occup Environ Health 48:111–118

    Article  CAS  Google Scholar 

  • Calderon RL, Hudgens EE, Carty C, He B, Le XC, Rogers J, Thomas DJ (2013) Biological and behavioural factors modify biomarkers of arsenic exposure in a U.S. population. Environ Res 126:134–144

    Article  CAS  Google Scholar 

  • Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M, Henry HF, Lee JS, Thomas DJ, Thompson C, Tokar EJ, Waalkes MP, Birnbaum LS, Suk WA (2016) Arsenic and environmental health: state of the science and future research opportunities. Environ Health Persp 124:890–899

    Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment)(2003) Canadian Environmental Quality Guidelines

    Google Scholar 

  • Cernansky S, Kolenck M, Sevc J, Urik M, Hiller E (2009) Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Biores Technol 100:1037–1040

    Article  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Challenger F, Higginbottom C, Ellis L (1933) The formation of organo-metalloidal compounds by microorganisms. Part I Trimethylarsine and dimethylethylarsine. J Chem Soc 5:95–101

    Google Scholar 

  • Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (lour.) Hara. Int J Phytorem 17:249–255

    Google Scholar 

  • Chen Y, Moore KL, Miller AJ, McGrath SP, Ma JF, Zhao FJ (2015) The role of nodes in arsenic storage and distribution in rice. J Exp Bot 66:3717–3724

    Article  CAS  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samantha G, Mandal B, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakrabarti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  Google Scholar 

  • Chutke NL, Ambulkar MN, Aggarwal AL, Garg AN (1994) Instrumental neutron activation analysis of ambient air dust particulates from metropolitan cities in India. Environ Pollut 85:67–76

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides-structure, properties, reactions, occurrence and uses. VCH Publishers, New York, p 573

    Google Scholar 

  • Crecelius EA, Bloom NS, Cowan CE, Jenne EA (1986) Determination of arsenic species in limnological samples by hydride generation atomic absorption spectroscopy. In: Speciation of selenium and arsenic in natural waters and sediments, vol 2, Arsenic speciation, Electric Power Research Institute, Palo Alto, EA-4641, Project 2020-2, pp 1–28

    Google Scholar 

  • Daria P, Czerczak S (2006) Hazardous effects of arsine: a short review. Int J Occup Med Environ Health 19:36–44

    Google Scholar 

  • David SB, Hemond HF (2002) Nitrate controls on iron and arsenic in an urban lake. Science 296:2373–2376

    Article  Google Scholar 

  • Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG (2015) Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat Plants 2:15202. doi:10.1038/nplants.2015.202

    Article  CAS  Google Scholar 

  • Dowdle PR, Laverman AM, Oremland RS (1996) Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Appl Environ Microbiol 62:1664–1669

    CAS  Google Scholar 

  • Duflou H, Maenhaut W, De Reuck J (1987) Application of PIXE analysis to the study of the regional distribution of trace elements in normal human brain. Biol Trace Elem Res 13:1–17

    Article  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  • Feldmann J, Salaun P (2008) Field test kits for arsenic: Evaluation in terms of sensitivity, reliability, applicability, and cost. In: Ahuja S (ed) Arsenic contamination of groundwater: Mechanism, analysis, and remediation. John Wiley & Sons, Inc., Hoboken, NJ

    Google Scholar 

  • Flora SJS (2014) Handbook of arsenic toxicology. Academic Press, United Kingdom

    Google Scholar 

  • Francesconi KA (2007) Toxic metal species and food regulations making a healthy choice. Analyst 132:17–20

    Article  CAS  Google Scholar 

  • Frohne T, Rinklebe J, Diaz-Bone RA, Laing GD (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160:414–424

    Article  CAS  Google Scholar 

  • Garnier JM, Travassac F, Lenoble V, Rose J, Zheng Y, Hossain MS, Chowdhury SH, Biswas AK, Ahmed KM, Cheng Z, van Geen A (2010) Temporal variations in arsenic uptake by rice plants in Bangladesh: the role of iron plaque in paddy fields irrigated with groundwater. Sci Total Environ 408:4185–4193

    Article  CAS  Google Scholar 

  • George CM, Sima L, Arias MHJ, Mihalic J, Cabrera LZ, Danz D, Checkley W, Gilman RH (2014) Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bull WHO 92:565–572

    Google Scholar 

  • George GM, Frahm LJ, McDonnell JP (1973) Dry ashing method for determination of total arsenic in animal tissues: collaborative study. J AOAC Int 56:793–797

    CAS  Google Scholar 

  • George RK, Roscoe RS (1951) Microdetermination of arsenic and its application to biological material. Anal Chem 23:914–919

    Article  Google Scholar 

  • Gibney BP, Nüsslein K (2007) Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere 70:329–336

    Article  CAS  Google Scholar 

  • Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng JC, Aitio A, Becking G (2001) Environmental health criteria 224 arsenic and arsenic compounds, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • Gong ZL, Lu XF, Ma MS, Watt C, Chris LX (2002) Arsenic speciation analysis. Talanta 58:77–96

    Article  CAS  Google Scholar 

  • Gosio B (1892a) Action of microphytes on solid compounds of arsenic: a recapitulation. Science 19:104–106

    Google Scholar 

  • Gosio B (1892b) S’ulriconoscimentodell’ arsenico per mezzo di alcunemuffe. RivIg Sanit’a Pub 3:261–273

    Google Scholar 

  • Gosio B (1893) Action de quelquesmoisissures Sur les compos’es fixesd’ arsenic. Arch Ital Biol 18:253–265

    Google Scholar 

  • Hagiwara K, Inui T, Koike Y, Aizawa M, Nakamura T (2015) Speciation of inorganic arsenic in drinking water by wavelength-dispersive X-ray fluorescence spectrometry after in situ preconcentration with miniature solid-phase extraction disks. Talanta 134:739–744

    Article  CAS  Google Scholar 

  • Hansen SH, Larsen EH, Pritzl G, Cornett C (1992) Speciation of seven arsenic compounds by high performance liquid chromatography with on-line detection by hydrogen-argon flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry. J Anal Spectrom 7:629–634

    Article  CAS  Google Scholar 

  • He Y, Zheng Y, Ramnaraine M, Locke DC (2004) Differential pulse cathodic stripping voltammetric speciation of trace level inorganic compounds in natural water samples. Anal Chim Acta 511:55–61

    Article  CAS  Google Scholar 

  • Hering JG, Kneebone PE (2001) Biogeochemical controls on arsenic occurrence and mobility in water supplies. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 155–181

    Google Scholar 

  • Hindmarsh JT, McCurdy RF (1986) Clinical and environmental aspects of arsenic toxicity. Crit Rev Clin Lab Sci 23:315–347

    Article  CAS  Google Scholar 

  • Holak W (1980) Determination of arsenic by cathodic stripping voltammetry with a hanging mercury drop electrode. Anal Chem 52:2189

    Article  CAS  Google Scholar 

  • Hohmann C, Winkler E, Morin G, Kappler A (2009) Anaerobic Fe (II)-oxidizing bacteria show As resistance and immobilize As during Fe (III) mineral precipitation. Environ Sci Technol 44:94–101

    Article  CAS  Google Scholar 

  • Honschopp S, Brunken N, Nehrkorn A, Breunig HJ (1996) Isolation and characterization of a new arsenic methylating bacterium from soil. Microbiol Res 151:37–41

    Article  CAS  Google Scholar 

  • Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167–176

    Article  CAS  Google Scholar 

  • Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ (2011) Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 123:305–332

    Article  CAS  Google Scholar 

  • Huffman GP, Ganguly B, Zhao J, Rao KRPM, Shah N, Feng Z, Huggins FE, Taghiei MM, Lu F, Wender I, Pradhan VR, Tierney JW, Seehra MM, Ibrahim MM, Shabtai J, Eyring EM (1993) Structure and dispersion of iron-based catalyst for direct coal liquefaction. Energy Fuels 7:285–296

    Article  CAS  Google Scholar 

  • IPCS (2001) Arsenic and arsenic compounds. Geneva, World Health Organization, International Programme on Chemical Safety (Environmental Health Criteria 224)

    Google Scholar 

  • Jia Y, Huang H, Sun GX, Zhao FJ, Zhu YG (2012) Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ Sci Technol 46:8090–8096

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47:3141–3148

    CAS  Google Scholar 

  • Khalequzzaman M, Faruque FS, Mitra AK (2005) Assessment of arsenic contamination of groundwater and health problems in Bangladesh. Int J Environ Res Public Health 2:204–213

    Article  CAS  Google Scholar 

  • Keimowitz AR, Mailloux BJ, Cole P, Stute M, Simpson HJ, Chillrud SN (2007) Laboratory investigations of enhanced sulfate reduction as a groundwater arsenic remediation strategy. Environ Sci Technol 41:6718–6724

    Article  CAS  Google Scholar 

  • Kim HS, Kim YJ, Seo YR (2015) An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 20:232–240

    Article  Google Scholar 

  • Kuehnelt D, Goessler W, Irgolic KJ (1997) Arsenic compounds in terrestrial organisms II: arsenocholine in the mushroom amanita muscaria. Appl Organomet Chem 11:459–470

    Article  CAS  Google Scholar 

  • Landsberger S, Wu D (1995) The impact of heavy metals from environmental tobacco smoke on indoor air quality as determined by Compton suppression neutron activation analysis. Sci Total Environ 173-174:323–337

    Article  CAS  Google Scholar 

  • López-Serrano Oliver A, Sanz-Landaluze J, Muñoz-Olivas R, Guinea J, Cámara C (2011) Zebra fish larvae as a model for the evaluation of inorganic arsenic and tributyltin bioconcentration. Water Res 45:6515–6524

    Article  CAS  Google Scholar 

  • Luong JHT, Lamb E, Maleb KB (2014) Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal Methods 6:6157–6169

    Article  CAS  Google Scholar 

  • Luten JB, Riekwel-Booy G, Rauchbaar A (1982) Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man. Environ Health Perspect 45:165–170

    Article  CAS  Google Scholar 

  • Maenhaut W (1987) Particle-induced X-ray emission spectrometry: an accurate technique in the analysis of biological environmental and geological samples. Anal Chim Acta 195:125–140

    Article  CAS  Google Scholar 

  • Majid E, Hrapovic S, Liu Y, Male KB, Luong JH (2006) Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal Chem 78:762–769

    Article  CAS  Google Scholar 

  • Majumder A, Bhattacharyya K, Kole SC, Ghosh S (2013) Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India. Environ Sci Pollut Res 20:5645–5653

    Article  CAS  Google Scholar 

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talukder R, Lowry D, Houghton S, Chadha DK (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: the example of West Bengal and its worldwide implications. Appl Geochem 19:1255–1293

    Article  CAS  Google Scholar 

  • Meharg A (2003) The arsenic green. Nature 423:688

    Article  CAS  Google Scholar 

  • Meliker JR, Slotnick MJ, Av Ruskin GA, Schottenfeld D, Jacquez GM, Wilson ML, Goovaerts P, Franzblau A, Nriagu JO (2010) Lifetime exposure to arsenic in drinking water and bladder cancer: a population-based case-control study in Michigan, USA. Cancer Causes Control 21:745–757

    Article  Google Scholar 

  • Mester Z, Sturgeon RE (2001) Detection of volatile arsenic chloride species during hydride generation: a new prospectus. J Anal At Spectrom 16:470–474

    Article  CAS  Google Scholar 

  • Mestrot A, Planer-Friedrich B, Feldmann J (2013) Biovolatilization: a poorly studied pathway of the arsenic biogeochemical cycle. Environ Sci Processes Impacts 15:1639–1651

    Article  CAS  Google Scholar 

  • Meyer J, Schmidt A, Michalke K, Hensel R (2007) Volatilization of metals and metalloids by the microbial population of an alluvial soil. Syst Appl Microbiol 30:229–238

    Google Scholar 

  • Meyer J, Michalke K, Kouril T, Hensel R (2008) Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst Appl Microbiol 31:81–87

    Google Scholar 

  • Michalke K, Wickenheiser EB, Mehring M, Hirner AV, Hensel R (2000) Production of volatile derivatives of metal(loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Google Scholar 

  • Michalke K, Schmidt A, Huber B, Meyer J, Sulkowski M, Hirner AV, Boertz J, Mosel F, Dammann P, Hilken G, Hedrich HJ, Dorsch M, Rettenmeier AW, Hensel R (2008) Role of intestinal microbiota in transformation of bismuth and other metals and metalloids into volatile methyl and hydride derivatives in humans and mice. Appl Environ Microbiol 74:3069–3075

    Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  Google Scholar 

  • Muñoz E, Palmero S (2005) Analysis and speciation of arsenic by stripping potentiometry: a review. Talanta 65:613–620

    Article  CAS  Google Scholar 

  • Newman DK (2000) Arsenic. In: encyclopedia of microbiology. Academic Press, San Diego, CA, pp 332–338

    Google Scholar 

  • Ng JC, Johnson D, Imray P, Chiswell B, Moore M (1998a) Speciation of arsenic metabolites in the urine of occupational workers and experimental rats using an optimised hydride cold-trapping method. Analyst 123:929–933

    Article  CAS  Google Scholar 

  • Ng JC, Kratzmann SM, Qi L, Crawley H, Chiswell B, Moore MR (1998b) Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst 123:889–892

    Article  CAS  Google Scholar 

  • Nickson RT, Mc Arthur JM, Burgess WG, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338

    Article  CAS  Google Scholar 

  • Nickson RT, Mc Arthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  CAS  Google Scholar 

  • NRC (2001) Arsenic in drinking water update. National Academy Press, Washington, DC

    Google Scholar 

  • Orvini E, Gillis TE, LaFleur PD (1974) Method for determination of selenium, arsenic, zinc, cadmium and mercury in environmental samples by neutron activation analysis. Anal Chem 46:1294–1299.

    Google Scholar 

  • Pakulska D, Czerczak S (2006) Hazardous effects of arsine: a short review. Intl J Occup Med Environ Health 19:36–44

    Article  Google Scholar 

  • Planer-Friedrich B, Lehr C, Matschullat J, Merkel BJ, Nordstrom DK, Sandstrom MW (2006) Speciation of volatile arsenic at geothermal features in Yellowstone National Park. Geochim Cosmochim Acta 70:2480–2491

    Article  CAS  Google Scholar 

  • Pomroy C, Charbonneau SM, McCullough RS, Tam GK (1980) Human retention studies with 74As. Toxicol Appl Pharmacol 53:550–556

    Article  CAS  Google Scholar 

  • Qin J, Lehr CR, Yuan CG, Le XC, Mc Dermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106:5213–5217

    Article  CAS  Google Scholar 

  • Rahman M, Sohel N, Yunus M, Chowdhury ME, Hore SK, Zaman K, Bhuiya A, Streatfield PK (2013) Increased childhood mortality and arsenic in drinking water in Matlab, Bangladesh: a population-based cohort study. PLoS One 8:e55014

    Article  CAS  Google Scholar 

  • Rasul SB, Munir AK, Hossain ZA, Khan AH, Alauddin M, Hussam A (2002) Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta 58:33–43

    Article  CAS  Google Scholar 

  • Rouff AA, Ma N, Kustka AB (2016) Adsorption of arsenic with struvite and hydroxylapatite in phosphate-bearing solutions. Chemosphere 146:574–581

    Article  CAS  Google Scholar 

  • Salaün P, Planer-Friedrich B, van den Berg CM (2007) Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal Chim Acta 585:312–322

    Article  CAS  Google Scholar 

  • Sánchez-Rodas D, de la Campa AM, Alsioufi L (2015) Analytical approaches for arsenic determination in air: a critical review. Anal Chim Acta 898:1–18

    Article  CAS  Google Scholar 

  • Sen G (2013) Cooperation between India and Bangladesh on control of arsenic poisoning: IDSA comment, Institute of Defence Studies and Analysis (Downloaded from: http://idsa.in/idsacomments/CooperationBetweenIndiaandBangladesh_GautamSen_270113)

  • Senn DB, Hemond HF (2002) Nitrate controls on iron and arsenic in an urban Lake. Science 296:2373–2376

    Article  CAS  Google Scholar 

  • Shariatpanahi M, Anderson AC, Abdelghani AA, Englande AJ, Hughes J, Wilkinson RF (1981) Biotransformation of the pesticide sodium arsenate. J Environ Sci Health Part B 16:35–41

    Article  CAS  Google Scholar 

  • Shibata T, Meng C, Umoren J, West H (2016) Risk Assessment of Arsenic in Rice Cereal and Other Dietary Sources for Infants and Toddlers in the U.S. Int J Environ Res Public Health 25:13

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  Google Scholar 

  • Su SM, Zeng XB, Bai LY, Jiang XL, Li LF (2010) Bioaccumulation and biovolatilization of pentavalent arsenic by Penicillin janthinellum, Fusarium oxysporum and Trichoderma asperellum under laboratory conditions. Curr Microbiol 61:261–266

    Article  CAS  Google Scholar 

  • Sun J, Chillrud SN, Mailloux BJ, Stute M, Singh R, Dong H, Lepre CJ, Bostick BC (2016) Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Chemosphere 144:1106–1115

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger JWT (1992) Environmental biogeochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    CAS  Google Scholar 

  • Thomas F, Diaz-Bone RA, Wuerfel O, Huber B, Weidenbach K, Schmitz RA, Hensel R (2011) Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis. Appl Environ Microbiol 77:8669–8675

    Article  CAS  Google Scholar 

  • Thomas P, Finnie JK, Williams JG (1997) Feasibility of identification and monitoring of arsenic species in soil and sediment samples by coupled high-performance liquid chromatography inductively coupled plasma mass spectrometry. J Anal Spectrom 12:1367–1372

    Article  CAS  Google Scholar 

  • Tripathi N, Kannan GM, Pant BP, Jaiswal DK, Malhotra PR, Flora SJ (1997) Arsenic-induced changes in certain neurotransmitter levels and their recoveries following chelation in rat whole brain. Toxicol Lett 92:201–208

    Article  CAS  Google Scholar 

  • Tripathi RD, Tripathi P, Dwivedi S, Dubey S, Chatterjee S, Chakrabarty D, Trivedi PK (2012) Arsenomics: omics of arsenic metabolism in plants. Front Physiol 3:275. doi:10.3389/fphys.2012.00275

    Article  CAS  Google Scholar 

  • Urik M, Cernansky S, Sevc J, Simonovicˇova A, Littera P (2007) Biovolatilization of arsenic by different fungal strains. Water Air Soil Pollut 186:337–342

    Article  CAS  Google Scholar 

  • USNRC-United States National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  • USNRC-United States National Research Council (2001) Arsenic in drinking water, 2001 update. National Academy Press, Washington, DC

    Google Scholar 

  • Van De Wiele T, Gallawa CM, Kubachk KM, Creed JT, Basta N, Dayton EA, Whitacre S, Du Laing G, Bradham K (2010) Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect 118:1004–1009

    Article  CAS  Google Scholar 

  • Wang P, Sun G, Jia Y, Meharg AA, Zhu Y (2014) A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci 26:371–381

    Article  Google Scholar 

  • Wang Y, Morin G, Ona-Nguema G, Juillot F, Calas G, Brown GE Jr (2011) Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes. Environ Sci Technol 45:7258–7266

    Article  CAS  Google Scholar 

  • WHO (1987) Air quality guidelines for Europe. Copenhagen, WHO Regional Office for Europe (European Series No. 23)

    Google Scholar 

  • WHO (World Health Organization) (2011) Arsenic in drinking-water: WHO/SDE/WSH/03.04/75/Rev/1 (Downloaded from: http://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf)

  • Wickenheiser EB, Michalke K, Drescher C, Hirner AV, Hensel R (1998) Development and application of liquid and gas-chromatographic speciation techniques with element specific (ICP-MS) detection to the study of anaerobic arsenic metabolism. Fresenius J Anal Chem 362:498–501

    Article  CAS  Google Scholar 

  • Wilkie J, Hering JG (1998) Rapid oxidation of geothermal arsenic(III) in stream waters of the eastern sierra Nevada. Environ Sci Technol 32:657–662

    Article  CAS  Google Scholar 

  • Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  Google Scholar 

  • Woolson EA, Kearney PC (1973) Persistence and reactions of 14C cacodylic acid in soils. Environ Sci Technol 7:47–50

    Article  CAS  Google Scholar 

  • Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011a) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638

    Article  CAS  Google Scholar 

  • Yin XX, Zhang YY, Yang J, Zhu YG (2011b) Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila. Environ Pollut 159:837–840

    Article  CAS  Google Scholar 

  • Yunus FM, Khan S, Chowdhury P, Milton AH, Hussain S, Rahman M (2016) A review of groundwater arsenic contamination in Bangladesh: the millennium development goal era and beyond. Int J Environ Res Public Health 13:215

    Article  CAS  Google Scholar 

  • Zhang SY, Sun GX, Yin XX, Rensing C, Zhu YG (2013) Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere 93:47–53

    Article  CAS  Google Scholar 

  • Zhang YY, Yang J, Yin XX, Yang SP, Zhu YG (2012) Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis. Eur J Protistol 48:227–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chatterjee, S., Moogoui, R., Gupta, D.K. (2017). Arsenic: Source, Occurrence, Cycle, and Detection. In: Gupta, D., Chatterjee, S. (eds) Arsenic Contamination in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-54356-7_2

Download citation

Publish with us

Policies and ethics