Skip to main content

Peripheral Circuit Design Considerations of Neuro-inspired Architectures

  • Chapter
  • First Online:
Neuro-inspired Computing Using Resistive Synaptic Devices

Abstract

Peripheral circuits in the resistive synaptic arrays perform the function of neurons in neuro-inspired computing applications and are responsible for the read and write operations of resistive device arrays. The read operation in resistive arrays essentially performs the weighted sum or inner-product computation, which is the most critical operation in neural networks. On the other hand, the write operation is accountable for updating resistive synapse weights, which is the key operation for learning in neural networks. To efficiently enable these read and write operations in resistive arrays, a number of different design techniques in literature will be presented in this chapter. First the CMOS circuit implementations for the read operation and the write operation will be examined, and then recent non-CMOS circuit implementations will also be described. Advantages, trade-offs, and future design prospects of different peripheral circuit designs will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal–oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)

    Article  Google Scholar 

  2. D. Kuzum, S. Yu, H.-S.P. Wong, Synaptic electronics: materials, devices and applications. Nanotechnology 24, 382001 (2013)

    Article  Google Scholar 

  3. S. Yu, P.-Y. Chen, Emerging memory technologies: recent trends and prospects. IEEE Solid State Circuits Mag. 8(2), 43–56 (2016)

    Article  Google Scholar 

  4. A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K. Tanabe, T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto, Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K. Shimakawa, T. Takagi, T. Mikawa, K. Aono, An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput, in IEEE International Solid-State Circuits Conference (2012)

    Google Scholar 

  5. T.-Y. Liu, T. H. Yan, R. Scheuerlein, Y. Chen, J. K. Lee, G. Balakrishnan, G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C.-Y. Chen, M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto, et al., A 130.7 mm2 2-layer 32Gb ReRAM memory device in 24 nm technology, in IEEE International Solid-State Circuits Conference (2013)

    Google Scholar 

  6. P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, J. Sawada, F. Akopyan, B.L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S.K. Esser, R. Appuswamy, B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, D.S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  Google Scholar 

  7. S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, H. Wu, Scaling-up resistive synaptic arrays for neuro-inspired architecture: challenges and prospect, In IEEE International Electron Devices Meeting (2015)

    Google Scholar 

  8. S. Lee, S. Lee, K. Moon, J. Park, B. Kim, H. Hwang, Comprehensive methodology for ReRAM and selector design guideline of cross-point array, in International Memory Workshop (IMW) (2015)

    Google Scholar 

  9. S.H. Jo, T. Kumar, S. Narayanan, H. Nazarian, Cross-point resistive RAM based on field-assisted superlinear threshold selector. IEEE Trans. Electron Devices 62(11), 3477–3481 (2015)

    Article  Google Scholar 

  10. A. Conte, G.L. Guidice, G. Palumbo, A. Signorello, A high-performance very low-voltage current sense amplifier for nonvolatile memories. IEEE J. Solid State Circuits (JSSC) 40(2), 507–514 (2005)

    Article  Google Scholar 

  11. X. Xue, W. Jian, J. Yang, F. Xiao, G. Chen, S. Xu, Y. Xie, Y. Lin, R. Huang, Q. Zou, J. Wu, A 0.13 μm 8 Mb logic-based CuxSiyO ReRAM with self-adaptive operation for yield enhancement and power reduction. IEEE J. Solid State Circuits (JSSC) 48(5), 1315–1322 (2013)

    Article  Google Scholar 

  12. R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, G. Hush, A 16Gb ReRAM with 200 MB/s write and 1GB/s read in 27 nm technology, in IEEE International Solid-State Circuits Conference (ISSCC) (2014)

    Google Scholar 

  13. M.-F. Chang, C.-W. Wu, C.-C. Kuo, S.-J. Shen, S.-M. Yang, K.-F. Lin, W.-C. Shen, Y.-C. King, C.-J. Lin, Y.-D. Chih, A low-voltage bulk-drain-driven read scheme for sub-0.5 V 4 Mb 65 nm logic-process compatible embedded resistive RAM (ReRAM) macro. IEEE J. Solid State Circuits (JSSC) 48(9), 2250–2259 (2013)

    Article  Google Scholar 

  14. J. Zhou, K.-H. Kim, W. Lu, Crossbar RRAM arrays: selector device requirements during read operation. IEEE Trans. Electron Devices 61(5), 1369–1376 (2014)

    Article  Google Scholar 

  15. S.-Y. Kim, J.-M. Baek, D.-J. Seo, J.-K. Park, J.-H. Chun, K.-W. Kwon, Power-efficient fast write and hidden refresh of ReRAM using an ADC-based sense amplifier. IEEE Trans. Circuits Syst. II 60(11), 776–780 (2013)

    Article  Google Scholar 

  16. D. Kadetotad, Z. Xu, A. Mohanty, P.-Y. Chen, B. Lin, J. Ye, S. Vrudhula, S. Yu, Y. Cao, J. Seo, Parallel architecture with resistive crosspoint array for dictionary learning acceleration. IEEE J. Emerg. Selected Top. Circuits Syst. (JETCAS) 5(2), 194–204 (2015)

    Article  Google Scholar 

  17. L.F. Abbott, Lapique’s introduction of the integrate-and-fire model neuron (1907). Brain Res. Bull. 50(5/6), 303–304 (1999)

    Article  Google Scholar 

  18. S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B.R. Lee, B.H. Lee, H. Hwang, Neuromorphic speech systems using advanced ReRAM-based synapse, in IEEE International Electron Devices Meeting (2013)

    Google Scholar 

  19. J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K.P. Biju, S. Kim, S. Park, H. Hwang, Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications, in IEEE International Electron Devices Meeting (IEDM) (2010)

    Google Scholar 

  20. B. Rajendran, Y. Liu, J. Seo, K. Gopalakrishnan, L. Chang, D.J. Friedman, M.B. Ritter, Specifications of nanoscale devices and circuits for neuromorphic computational systems. IEEE Trans. Electron Devices 60(1), 246–253 (2013)

    Article  Google Scholar 

  21. L. Gao, I.T. Wang, P.-Y. Chen, S. Vrudhula, J. Seo, Y. Cao, T.-H. Hou, S. Yu, Fully parallel write/read in resistive synaptic array for accelerating on-chip learning. Nanotechnology 26, 455204 (2015)

    Article  Google Scholar 

  22. J.-W. Jang, S. Park, G.W. Burr, H. Hwang, Y.-H. Jeong, Optimization of conductance change in Pr1 − xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36(5), 457–459 (2015)

    Article  Google Scholar 

  23. M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, R.W. Linderman, Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neural Netw. Learn. Syst. 25(10), 1864–1878 (2014)

    Article  Google Scholar 

  24. D. Chabi, Z. Wang, W. Zhao, J.-O. Klein, On-chip supervised learning rule for ultra high density neural crossbar using memristor for synapse and neuron, in International Symposium on Nanoscale Architectures (NANOARCH) (2014)

    Google Scholar 

  25. B. Li, Y. Wang, Y. Wang, Y. Chen, H. Yang, Training itself: mixed-signal training acceleration for memristor-based neural network, in Asia and South Pacific Design Automation Conference (ASP-DAC) (2014)

    Google Scholar 

  26. K. Moon, E. Cha, J. Park, S. Gi, M. Chu, K. Baek, B. Lee, S. Oh, H. Hwang, High density neuromorphic system with Mo/Pr0.7Ca0.3MnO3 synapse and NbO2 IMT oscillator neuron, in IEEE International Electron Devices Meeting (IEDM) (2015)

    Google Scholar 

  27. P.-Y. Chen, J. Seo, Y. Cao, S. Yu, Compact oscillation neuron exploiting metal-insulator-transition for neuromorphic computing, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-sun Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kadetotad, D., Chen, PY., Cao, Y., Yu, S., Seo, Js. (2017). Peripheral Circuit Design Considerations of Neuro-inspired Architectures. In: Yu, S. (eds) Neuro-inspired Computing Using Resistive Synaptic Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-54313-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54313-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54312-3

  • Online ISBN: 978-3-319-54313-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics