TaOx-/TiO2-Based Synaptic Devices



The development of a high-density, low-power, and reliable synaptic device is essential in the implementation of highly anticipated hardware neural networks. Hence, numerous studies have investigated suitable two-terminal synaptic devices that precisely mimic biological synaptic features. In this chapter, we reviewed the development of a Ta/TaOx/TiO2/Ti resistive switching memory (RRAM) as a promising synaptic device technology for future neuromorphic computing systems. First, we reviewed the basic memory characteristics of the device and introduced a switching mechanism through electrical measurements and physical simulations. Second, we found that the device was particularly suitable for analog synapses, where several synaptic characteristics were demonstrated; moreover, we built a compact model to simulate these characteristics. Finally, a three-dimensional (3D) synaptic network was realized. In this chapter, we discussed the nonlinear weight update of the device and proposed an identical pulse training scheme for its improvement.


Resistive Switching Switching Mechanism Tunnel Barrier High Resistance State Training Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.-W. Hsu, I.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, T.-H. Hou, in Symposium on VLSI Technology. Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory (IEEE, Piscataway, 2013)Google Scholar
  2. 2.
    C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, W.-Y. Jang, C.-H. Lin, T.-H. Hou, in IEEE International Electron Devices Meeting (IEDM). 3D vertical TaOx/TiO2 RRAM with 103 self-rectifying ratio and sub-μA operating current (IEEE, Piscataway, 2013)Google Scholar
  3. 3.
    C.-W. Hsu, Y.-F. Wang, C.-C. Wan, I.-T. Wang, C.-T. Chou, W.-L. Lai, Y.-J. Lee, T.-H. Hou, Homogeneous barrier modulation of TaOx/TiO2 bilayers for ultra-high endurance three-dimensional storage-class memory. Nanotechnology 25, 165202 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Flocke, T.G. Noll, in IEEE European Solid-State Circuits Conference (ESSCIRC). Fundamental analysis of resistive nano-crossbars for the use in hybrid nano/CMOS-memory (IEEE, Piscataway, 2007)Google Scholar
  5. 5.
    M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-G. Baek, I.-K. Yoo, in IEEE International Electron Devices Meeting (IEDM). 2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications (IEEE, Piscataway, 2007)Google Scholar
  6. 6.
    J.-J. Huang, T.-H. Hou, C.-W. Hsu, Y.-M. Tseng, W.-H. Chang, W.-Y. Jang, C.-H. Lin, Flexible one diode-one resistor crossbar resistive-switching memory. Jpn. J. Appl. Phys. 51, 04DD09 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Shin, I. Kim, K.P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application. J. Appl. Phys. 109, 033712 (2011)CrossRefGoogle Scholar
  8. 8.
    J.-J. Huang, Y.-M. Tseng, W.-C. Luo, C.-W. Hsu, T.-H. Hou, in IEEE International Electron Devices Meeting (IEDM). One selector-one resistor (1S1R) crossbar array for high-density flexible memory applications (IEEE, Piscataway, 2011)Google Scholar
  9. 9.
    R.F. Freitas, W.W. Wilcke, Storage-class memory: The next storage system technology. IBM J. Res. Dev. 52, 439–447 (2008)CrossRefGoogle Scholar
  10. 10.
    G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008)CrossRefGoogle Scholar
  11. 11.
    H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)CrossRefGoogle Scholar
  12. 12.
    J.-C. Liu, I.-T. Wang, C.-W. Hsu, W.-C. Luo, T.-H. Hou, in Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). Investigating MLC variation of filamentary and non-filamentary RRAM (IEEE, Piscataway, 2014)Google Scholar
  13. 13.
    Y.-F. Wang, Y.-C. Lin, I.-T. Wang, T.-P. Lin, T.-H. Hou, Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep. 5, 10150 (2015)CrossRefGoogle Scholar
  14. 14.
    N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, 1948)MATHGoogle Scholar
  15. 15.
    S. Yu, H.-S.P. Wong, A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 31(21), 1455–1457 (2010)CrossRefGoogle Scholar
  16. 16.
    S. Kim, S.-J. Kim, K.M. Kim, S.R. Lee, M. Chang, E. Cho, Y.-B. Kim, C.J. Kim, U.-I. Chung, I.-K. Yoo, Physical electro-thermal model for resistive switching in bi-layered resistance-change memory. Sci. Rep. 3, 1680 (2013)CrossRefGoogle Scholar
  17. 17.
    X.A. Tran, B. Gao, J.F. Kang, X. Wu, L. Wu, Z. Fang, Z.R. Wang, K.L. Pey, Y.C. Yeo, A.Y. Du, M. Liu, B.Y. Nguyen, M.F. Li, H.Y. Yu, in IEEE International Electron Devices Meeting (IEDM). Self-rectifying and forming-free unipolar HfOx based-high performance RRAM built by fab-available materials (IEEE, Piscataway, 2011)Google Scholar
  18. 18.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J.K. Gimzewski, M. Aono, Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011)CrossRefGoogle Scholar
  20. 20.
    I.-T. Wang, Y.-C. Lin, Y.-F. Wang, C.-W. Hsu, T.-H. Hou, in IEEE International Electron Devices Meeting (IEDM). 3D synaptic architecture with ultralow sub-10 fJ energy per spike for neuromorphic computation (IEEE, Piscataway, 2014)Google Scholar
  21. 21.
    D. Kuzum, S. Yu, H.-S.P. Wong, Synaptic electronics: Materials, devices, and applications. Nanotechnology 24, 382001 (2013)CrossRefGoogle Scholar
  22. 22.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21, 4487–4492 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Zamarreño-Ramos, L.A. Camuñas-Mesa, J.A. Pérez-Carrasco, T. Masquelier, T. Serrano-Gotarredona, B. Linares-Barranco, On spike-timing-dependnet-plasticity, memristive devices, and building a self-learning visual cortex. Front. Neurosci. 5, 26 (2011)CrossRefGoogle Scholar
  25. 25.
    D.O. Hebb, The Organization of Behavior: A Neuropsychological Study (Wiley, New York, 1949)Google Scholar
  26. 26.
    R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002)CrossRefGoogle Scholar
  27. 27.
    C. Mead, Neuromorphic electronic systems. Proc. IEEE 78(10), 1629–1636 (1990)CrossRefGoogle Scholar
  28. 28.
    D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A.A. Kalyanpur, A. Lally, J.W. Murdock, E. Nyberg, J. Prager, N. Schlaefer, C. Welty, Building Watson: An overview of the DeepQA project. AI Mag. 31(3), 59–79 (2010)Google Scholar
  29. 29.
    Y. Taigman, M. Yang, M. Ranzato, L. Wolf, in IEEE Computer Vision and Pattern Recognition (CVPR). DeepFace: Closing the gap to human-level performance in face verification (IEEE, Piscataway, 2014)Google Scholar
  30. 30.
    D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Kang, W. Jeong, C. Kim, D.-H. Kim, Y.S. Cho, K.-T. Kang, J. Ryu, K.-M. Kang, S. Lee, W. Kim, H. Lee, J. Yu, N. Choi, D.-S. Jang, J.-D. Ihm, D. Kim, Y.-S. Min, M.-S. Kim, A.-S. Park, J.-I. Son, I.-M. Kim, P. Kwak, B.-K. Jung, D.-S. Lee, H. Kim, H.-J. Yang, D.-S. Byeon, K.-T. Park, K.-H. Kyung, J.-H. Choi, in IEEE International Solid-State Circuits Conference (ISSCC). 256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers (IEEE, Piscataway, 2016)Google Scholar
  32. 32.
    W.-C. Luo, J.-C. Liu, Y.-C. Lin, C.-L. Lo, J.-J. Huang, K.-L. Lin, T.-H. Hou, Statistical model and rapid prediction of RRAM SET speed-disturb dilemma. IEEE Trans. Electron Devices 60(11), 3760–3766 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, K. Seo, J. Park, S. Kim, W. Lee, J. Shin, D. Lee, G. Choi, J. Woo, E. Cha, J. Jang, C. Park, M. Jeon, B. Lee, B.H. Lee, H. Hwang, in IEEE International Electron Devices Meeting (IEDM). RRAM-based synapse for neuromorphic system with pattern recognition function (IEEE, Piscataway, 2012)Google Scholar
  34. 34.
    S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.-S.P. Wong, in IEEE International Electron Devices Meeting (IEDM). A neuromorphic visual system using RRAM synaptic devices with sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling (IEEE, Piscataway, 2012)Google Scholar
  35. 35.
    P.-Y. Chen, B. Lin, I.-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-S. Seo, Y. Cao, S. Yu, in IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Mitigating effects of non-ideal synaptic device characteristics for on-chip learning (IEEE Press books, Piscataway, 2015)Google Scholar
  36. 36.
    S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, H. Wu, in IEEE International Electron Devices Meeting (IEDM). Scaling-up resistive synaptic arrays for Neuro-inspired architecture: Challenges and Prospect (IEEE, Piscataway, 2015)Google Scholar
  37. 37.
    G.W. Burr, R.M. Shelby, C. di Nolfo, J.W. Jang, R.S. Shenoy, P. Narayanan, K. Virwani, E.U. Giacometti, B. Kurdi, H. Hwang, in IEEE International Electron Devices Meeting (IEDM). Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element (IEEE, Piscataway, 2014)Google Scholar
  38. 38.
    I.-T. Wang, C.-C. Chang, L.-W. Chiu, T. Chou, T.-H. Hou, 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology 27, 365204 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B.R. Lee, B.H. Lee, H. Hwang, in IEEE International Electron Devices Meeting (IEDM). Neuromorphic speech system using advanced ReRAM-based synapse (IEEE, Piscataway, 2013)Google Scholar
  40. 40.
    T. Chou, J.-C. Liu, L.-W. Chiu, I.-T. Wang, C.-M. Tsai, T.-H. Hou, in Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). Neuromorphic pattern learning using HBM electronic synapse with excitatory and inhibitory plasticity (IEEE, Piscataway, 2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electronics Engineering and Institute of ElectronicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations