Post-transplant Cyclophosphamide in Haploidentical Transplantation

  • Shannon R. McCurdyEmail author
  • Ephraim J. Fuchs
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)


HLA-matched sibling donors are available for only a minority of patients. Partially HLA-mismatched related (HLA-haploidentical) donors can be identified for the vast majority of patients, but transplants from these donors have historically been limited by excessive graft-versus-host disease, nonrelapse mortality, and poor overall survival. When given on days 3 and 4 after HLA-haploidentical T-cell replete blood or marrow transplantation, high-dose cyclophosphamide depletes dividing alloreactive T-cells, resulting in low rates of acute graft-versus-host disease, comparable to HLA-matched transplantation, and chronic graft-versus-host disease incidence below that seen with T-cell replete HLA-matched transplantation. Importantly, cyclophosphamide spares non-alloreactive T-cells, preserving immunity and leading to a low incidence of nonrelapse mortality after HLA-haploidentical transplantation. HLA-haploidentical transplantation utilizing post-transplant cyclophosphamide achieves comparable survival to HLA-matched transplantation and has thereby expanded the option of allogeneic transplantation to the vast majority of eligble recipients.


Haploidentical transplantation Post-transplant cyclophosphamide Lymphoma Graft-versus-host disease Immune reconstitution Graft failure 


  1. 1.
    Powles RL, Morgenstern GR, Kay HE, et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet. 1983;1:612–5.CrossRefGoogle Scholar
  2. 2.
    Spitzer TR. Engraftment syndrome following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001;27:893–8.CrossRefGoogle Scholar
  3. 3.
    Abboud R, Keller J, Slade M, DiPersio JF, Westervelt P, Rettig MP, Meier S, Fehniger TA, Abboud CN, Uy GL, Vij R, Trinkaus KM, Schroeder MA, Romee R. Severe cytokine-release syndrome after T cell-replete peripheral blood haploidentical donor transplantation is associated with poor survival and anti-il-6 therapy is safe and well tolerated. Biol Blood Marrow Transplant. 2016;22(10):1851–60. Epub 2016 Jun 16.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Anasetti C, Beatty PG, Storb R, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Human Immunol. 1990;29:79–91.CrossRefGoogle Scholar
  5. 5.
    Szydlo R, Goldman JM, Klein JP, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15:1767–77.CrossRefGoogle Scholar
  6. 6.
    Beatty PG, Clift RA, Mickelson EM, et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313:765–71.CrossRefGoogle Scholar
  7. 7.
    Zheng H, Matte-Martone C, Li H, et al. Effector memory CD4+ T cells mediate graft-versus-leukemia without inducing graft-versus-host disease. Blood. 2008;111:2476–84.CrossRefGoogle Scholar
  8. 8.
    Teschner D, Distler E, Wehler D, et al. Depletion of naive T cells using clinical grade magnetic CD45RA beads: a new approach for GVHD prophylaxis. Bone Marrow Transplant. 2014;49:138–44.CrossRefGoogle Scholar
  9. 9.
    Valujskikh A, Pantenburg B, Heeger PS. Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am J Transplant. 2002;2:501–9.CrossRefGoogle Scholar
  10. 10.
    Finberg R, Burakoff SJ, Cantor H, Benacerraf B. Biological significance of alloreactivity: T cells stimulated by Sendai virus-coated syngeneic cells specifically lyse allogeneic target cells. Proc Natl Acad Sci U S A. 1978;75:5145–9.CrossRefGoogle Scholar
  11. 11.
    Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol. 2002;2:251–62.CrossRefGoogle Scholar
  12. 12.
    Mason DA. Very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today. 1998;19:395–404.CrossRefGoogle Scholar
  13. 13.
    Yang H, Welsh RM. Induction of alloreactive cytotoxic T cells by acute virus infection of mice. J Immunol. 1986;136:1186–93.PubMedGoogle Scholar
  14. 14.
    Adams AB, Williams MA, Jones TR, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest. 2003;111:1887–95.CrossRefGoogle Scholar
  15. 15.
    Amir AL, D’Orsogna LJ, Roelen DL, et al. Allo-HLA reactivity of virus-specific memory T cells is common. Blood. 2010;115:3146–57.Google Scholar
  16. 16.
    Li Y, Li XC, Zheng XX, Wells AD, Turka LA, Strom TB. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat Med. 1999;5:1298–302.CrossRefGoogle Scholar
  17. 17.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–12.CrossRefGoogle Scholar
  18. 18.
    Storb R, Deeg HJ, Farewell V, et al. Marrow transplantation for severe aplastic anemia: methotrexate alone compared with a combination of methotrexate and cyclosporine for prevention of acute graft-versus-host disease. Blood. 1986;68:119–25.PubMedGoogle Scholar
  19. 19.
    Jenkins MK, Chen CA, Jung G, Mueller DL, Schwartz RH. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol. 1990;144:16–22.PubMedGoogle Scholar
  20. 20.
    Beschorner WE, Hess AD, Shinn CA, Santos GW. Transfer of cyclosporine-associated syngeneic graft-versus-host disease by thymocytes. Resemblance to chronic graft-versus-host disease. Transplantation. 1988;45:209–15.CrossRefGoogle Scholar
  21. 21.
    Santos GW, Hess AD, Vogelsang GB. Graft-versus-host reactions and disease. Immunol Rev. 1985;88:169–92.CrossRefGoogle Scholar
  22. 22.
    Ho VT, Soiffer RJ. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood. 2001;98:3192–204.CrossRefGoogle Scholar
  23. 23.
    Mehta J, Singhal S, Gee AP, et al. Bone marrow transplantation from partially HLA-mismatched family donors for acute leukemia: single-center experience of 201 patients. Bone Marrow Transplant. 2004;33:389–96.CrossRefGoogle Scholar
  24. 24.
    Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.CrossRefGoogle Scholar
  25. 25.
    Berenbaum MC, Brown IN. Prolongation of Homograft Survival in Mice with Single Doses of Cyclophosphamide. Nature. 1963;200:84.CrossRefGoogle Scholar
  26. 26.
    Aisenberg AC, Wilkes B. Immunological tolerance induced by cyclophosphamide assayed by plaque spleen cell method. Nature. 1967;213:498–9.CrossRefGoogle Scholar
  27. 27.
    Luznik L, Jalla S, Engstrom LW, Iannone R, Fuchs EJ. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–64.CrossRefGoogle Scholar
  28. 28.
    Mayumi H, Umesue M, Nomoto K. Cyclophosphamide-induced immunological tolerance: an overview. Immunobiology. 1996;195:129–39.CrossRefGoogle Scholar
  29. 29.
    Gibbons C, Sykes M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol Rev. 2008;223:334–60.CrossRefGoogle Scholar
  30. 30.
    Strauss G, Osen W, Debatin KM. Induction of apoptosis and modulation of activation and effector function in T cells by immunosuppressive drugs. Clin Exp Immunol. 2002;128:255–66.CrossRefGoogle Scholar
  31. 31.
    Kanakry CG, Coffey DG, Towlerton AM, et al. Origin and evolution of the T cell repertoire after posttransplantation cyclophosphamide. JCI Insight. 2016;1(5).Google Scholar
  32. 32.
    Ross D, Jones M, Komanduri K, Levy RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19:1430–8.CrossRefGoogle Scholar
  33. 33.
    Eto M, Mayumi H, Tomita Y, Yoshikai Y, Nomoto K. Intrathymic clonal deletion of V beta 6+ T cells in cyclophosphamide-induced tolerance to H-2-compatible, Mls-disparate antigens. J Exp Med. 1990;171:97–113.CrossRefGoogle Scholar
  34. 34.
    Ganguly S, Ross DB, Panoskaltsis-Mortari A, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124:2131–41.CrossRefGoogle Scholar
  35. 35.
    Kanakry CG, Ganguly S, Zahurak M, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157.CrossRefGoogle Scholar
  36. 36.
    Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.CrossRefGoogle Scholar
  37. 37.
    Lang P, Greil J, Bader P, et al. Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells Mol Dis. 2004;33:281–7.CrossRefGoogle Scholar
  38. 38.
    Klingebiel T, Cornish J, Labopin M, et al. Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of center size: an analysis on behalf of the Acute Leukemia and Pediatric Disease Working Parties of the European Blood and Marrow Transplant group. Blood. 2010;115:3437–46.CrossRefGoogle Scholar
  39. 39.
    Lang P, Teltschik HM, Feuchtinger T, et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol. 2014;165:688–98.CrossRefGoogle Scholar
  40. 40.
    Bashey A, Zhang MJ, McCurdy SR, St Martin A, Argall T, Anasetti C, Ciurea SO, Fasan O, Gaballa S, Hamadani M, Munshi P, Al Malki MM, Nakamura R, O’Donnell PV, Perales MA, Raj K, Romee R, Rowley S, Rocha V, Salit RB, Solh M, Soiffer RJ, Fuchs EJ, Eapen M. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-cell-replete haploidentical donor transplantation using post-transplant cyclophosphamide. J Clin Oncol. 2017;35(26):3002–9. Epub 2017 Jun 23.CrossRefPubMedGoogle Scholar
  41. 41.
    Russell JA, Larratt L, Brown C, et al. Allogeneic blood stem cell and bone marrow transplantation for acute myelogenous leukemia and myelodysplasia: influence of stem cell source on outcome. Bone Marrow Transplant. 1999;24:1177–83.CrossRefGoogle Scholar
  42. 42.
    Bashey A, Zhang X, Sizemore CA, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–6.CrossRefGoogle Scholar
  43. 43.
    Sullivan KM, Weiden PL, Storb R, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood. 1989;73:1720–8.PubMedGoogle Scholar
  44. 44.
    Horowitz M, Gale R, Sondel P, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.Google Scholar
  45. 45.
    McCurdy SR, Kanakry CG, Tsai HL, et al. Grade II acute graft-versus-host disease and higher nucleated cell graft dose improve progression-free survival after HLA haploidentical transplant with post-transplant cyclophosphamide. Biol Blood Marrow Transplant. 2017.
  46. 46.
    Luznik L, Slansky JE, Jalla S, et al. Successful therapy of metastatic cancer using tumor vaccines in mixed allogeneic bone marrow chimeras. Blood. 2003;101:1645–52.CrossRefGoogle Scholar
  47. 47.
    Rubio MT, Saito TI, Kattleman K, Zhao G, Buchli J, Sykes M. Mechanisms of the antitumor responses and host-versus-graft reactions induced by recipient leukocyte infusions in mixed chimeras prepared with nonmyeloablative conditioning: a critical role for recipient CD4+ T cells and recipient leukocyte infusion-derived IFN-gamma-producing CD8+ T cells. J Immunol. 2005;175:665–76.CrossRefGoogle Scholar
  48. 48.
    Dey BR, McAfee S, Colby C, et al. Anti-tumour response despite loss of donor chimaerism in patients treated with non-myeloablative conditioning and allogeneic stem cell transplantation. Br J Haematol. 2005;128:351–9.CrossRefGoogle Scholar
  49. 49.
    Symons HJ, Levy MY, Wang J, et al. The allogeneic effect revisited: exogenous help for endogenous, tumor-specific T cells. Biol Blood Marrow Transplant. 2008;14:499–509.CrossRefGoogle Scholar
  50. 50.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.CrossRefGoogle Scholar
  51. 51.
    McCurdy SR, Vulic A, Symons HJ, et al. Comparable and robust immune reconstitution after HLA-haploidentical or HLA-matched allogeneic transplantation (BMT) utilizing posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2015;21:S71.CrossRefGoogle Scholar
  52. 52.
    Symons HJ, Leffell MS, Rossiter ND, Zahurak M, Jones RJ, Fuchs EJ. Improved survival with inhibitory killer immunoglobulin receptor (KIR) gene mismatches and KIR haplotype B donors after nonmyeloablative, HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2010;16:533–42.CrossRefGoogle Scholar
  53. 53.
    Besse K, Maiers M, Confer D, Albrecht M. On modeling human leukocyte antigen-identical sibling match probability for allogeneic hematopoietic cell transplantation: estimating the need for an unrelated donor source. Biol Blood Marrow Transplant. 2016;22:410–7.CrossRefGoogle Scholar
  54. 54.
    Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–48.CrossRefGoogle Scholar
  55. 55.
    Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.Google Scholar
  56. 56.
    Brunstein CG, Fuchs EJ, Carter SL, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8.CrossRefGoogle Scholar
  57. 57.
    McCurdy SR, Fuchs EJ. Comparable outcomes for hematologic malignancies after HLA-haploidentical transplantation with posttransplantation cyclophosphamide and HLA-matched transplantation. Adv Hematol. 2015;2015:431923.CrossRefGoogle Scholar
  58. 58.
    Bashey A, Zhang X, Jackson K, et al. Comparison of outcomes of hematopoietic cell transplants from T-replete haploidentical donors using post-transplantation cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 allele-matched unrelated donors and HLA-identical sibling donors: a multivariable analysis including disease risk index. Biol Blood Marrow Transplant. 2015;22:125–33.CrossRefGoogle Scholar
  59. 59.
    McCurdy SR, Kanakry JA, Showel MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31.CrossRefGoogle Scholar
  60. 60.
    Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.CrossRefGoogle Scholar
  61. 61.
    Garciaz S, Castagna L, Bouabdallah R, et al. Familial haploidentical challenging unrelated donor Allo-SCT in advanced non-Hodgkin lymphomas when matched related donor is not available. Bone Marrow Transplant. 2015;50:880.CrossRefGoogle Scholar
  62. 62.
    Raiola AM, Dominietto A, di Grazia C, et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant. 2014;20:1573–9.CrossRefGoogle Scholar
  63. 63.
    Di Stasi A, Milton DR, Poon LM, et al. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leukocyte antigen-matched unrelated and related donors. Biol Blood Marrow Transplant. 2014;20:1975–81.CrossRefGoogle Scholar
  64. 64.
    Kanakry JA. Outcomes of related donor HLA-identical or HLA-haploidentical allogeneic blood or marrow transplantation for peripheral T cell lymphoma. Biol Blood Marrow Transplant. 2013;19:602–6.CrossRefGoogle Scholar
  65. 65.
    Burroughs LM, O’Donnell PV, Sandmaier BM, et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell transplantation following nonmyeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biol Blood Marrow Transplant. 2008;14:1279–87.CrossRefGoogle Scholar
  66. 66.
    Armand P, Gibson CJ, Cutler C, et al. A disease risk index for patients undergoing allogeneic stem cell transplantation. Blood. 2012;120:905–13.CrossRefGoogle Scholar
  67. 67.
    Kanakry CG, O’Donnell PV, Furlong T, et al. Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol. 2014;32:3497–505.CrossRefGoogle Scholar
  68. 68.
    Bashey A, Zhang X, Jackson K, et al. Comparison of outcomes of hematopoietic cell transplants from T-replete haploidentical donors using post-transplantation cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 allele-matched unrelated donors and hla-identical sibling donors: a multivariable analysis including disease risk index. Biol Blood Marrow Transplant. 2016;22:125–33.CrossRefGoogle Scholar
  69. 69.
    Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172:603–6.CrossRefGoogle Scholar
  70. 70.
    Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity. 1951;5:379.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Hematologic MalignanciesSidney Kimmel Comprehensive Cancer Center at Johns HopkinsBaltimoreUSA

Personalised recommendations