Adoptive Immunotherapy with Regulatory and Conventional T-cells in Haploidentical T-cell Depleted Transplantation Protects from GvHD and Exerts GvL Effect

  • Massimo F. Martelli
  • Mauro Di Ianni
  • Loredana Ruggeri
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

After conventional (“unmanipulated”) allogeneic hematopoietic cell transplantation, eradication of residual disease, i.e., the so-called graft-versus-leukemia (GvL) effect, depends on donor T-lymphocytes which recognize host histocompatibility antigens on leukemic cells. However, this transplant is far from optimal because it is associated with high incidence of relapse and risk of graft-versus-host disease (GvHD). Recent clinical trials suggest that adoptive immunotherapy with regulatory and conventional T-lymphocytes prevents GvHD while allowing a GvL effect in acute leukemia patients undergoing T-cell-depleted-haploidentical transplantation. We discuss the clinical relevance of this new immunotherapeutic strategy and the mechanisms underlying the separation of GvL effect from GvHD.

Keywords

T-cell depletion Graft-versus-host disease Graft-versus-leukemia effect Conventional T-cell Regulatory T-cells Haploidentical transplant Alloreactivity Acute leukemias Immune system reconstitution Ex vivo expansion 

References

  1. 1.
    Weiden PL, Flournoy N, Thomas ED, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300:1068–73.CrossRefGoogle Scholar
  2. 2.
    Horowitz MM, Gale RP, Sondel PM, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–62.PubMedGoogle Scholar
  3. 3.
    Kloosterman TC, Martens AC, van Bekkum DW, et al. Graft-versus-leukemia in rat MHC-mismatched bone marrow transplantation is merely an allogeneic effect. Bone Marrow Transplant. 1995;15:583–90.PubMedGoogle Scholar
  4. 4.
    Bortin MM, Truitt RL, Rimm AA, et al. Graft-versus-leukaemia reactivity induced by alloimmunisation without augmentation of graft-versus-host reactivity. Nature. 1979;281:490–1.CrossRefGoogle Scholar
  5. 5.
    Reddy P, Maeda Y, Liu C, et al. A crucial role for antigen presenting cells and alloantigen expression in graft-versus-leukemia responses. Nat Med. 2005;11:1244–9.CrossRefGoogle Scholar
  6. 6.
    Rezvani K, Barrett AJ. Characterizing and optimizing immune responses to leukaemia antigens after allogeneic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21:437–53.CrossRefGoogle Scholar
  7. 7.
    Gupta V, Talllman MS, He W, et al. Comparable survival after HLA-well matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavourable cytogenetics at diagnosis. Blood. 2010;116:1839–48.CrossRefGoogle Scholar
  8. 8.
    Scaradavou A, Brunstein CG, Eapen M, et al. Double unit grafts successfully extend the application of umbilical cord blood transplantation in adults with acute leukemia. Blood. 2013;121:752–8.CrossRefGoogle Scholar
  9. 9.
    Verneris MR, Brunstein CG, Barker JN, et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of two units. Blood. 2009;114:4293–9.CrossRefGoogle Scholar
  10. 10.
    Rocha V, Labopin M, Mohty M, et al. Outcomes after double unit unrelated cord blood transplantation (UCBT) compared with single UCBT in adults with acute leukemia in remission. A Eurocord and ALWP Collaboration study In abstract of ASH Annual Meeting. Blood. 2010;116:910a.Google Scholar
  11. 11.
    Aversa F, Tabilio A, Terenzi A, et al. Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.CrossRefGoogle Scholar
  13. 13.
    Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54.CrossRefGoogle Scholar
  14. 14.
    Ciceri F, Labopin M, Aversa F, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112:3574–81.CrossRefGoogle Scholar
  15. 15.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100.CrossRefGoogle Scholar
  16. 16.
    Ruggeri L, Mancusi A, Capanni M, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40.CrossRefGoogle Scholar
  17. 17.
    Mancusi A, Ruggeri L, Urbani E, et al. Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces non-relapse mortality. Blood. 2015;125:3173–82.CrossRefGoogle Scholar
  18. 18.
    Luznik L, O’Donnell P, Symons H, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.CrossRefGoogle Scholar
  19. 19.
    Ciurea SO, Zhang M-J, Bacigalupo A, et al. Haploidentical transplant with post-transplant cyclophosphamide versus matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.CrossRefGoogle Scholar
  20. 20.
    Huang X-J, Liu D-H, Liu K-Y, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplantation. 2006;38:291–7.CrossRefGoogle Scholar
  21. 21.
    Di Bartolomeo P, Santarone S, De Angelis G, et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood. 2013;121:849–57.CrossRefGoogle Scholar
  22. 22.
    Wang Y, Liu QF, LP X, et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125:3956–62.CrossRefGoogle Scholar
  23. 23.
    Arcese W, Picardi A, Santarone S, et al. Haploidentical, G-CSF-primed, unmanipulated bone marrow transplantation for patients with high-risk haematological malignancies: an update. Bone Marrow Transplant. 2015;50:S24–30.CrossRefGoogle Scholar
  24. 24.
    Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMedGoogle Scholar
  25. 25.
    Hoffmann P, Ermann J, Edinger M, et al. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196:389–99.CrossRefGoogle Scholar
  26. 26.
    Nguyen VH, Zeiser R, daSilva DL, et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic stem cell transplantation. Blood. 2007;109:2649–56.CrossRefGoogle Scholar
  27. 27.
    Nguyen VH, Shashidhar S, Chang DS, et al. The impact of regulatory T cells on T cell immunity following hematopoietic cell transplantation. Blood. 2008;111:945–53.CrossRefGoogle Scholar
  28. 28.
    Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99:3493–9.CrossRefGoogle Scholar
  29. 29.
    Cohen JL, Trenado A, Vasey D, et al. CD4(+) CD25(+) immunoregulatory T cells: new therapeutics for graft-versus host disease. J Exp Med. 2002;196:401–6.CrossRefGoogle Scholar
  30. 30.
    Trenado A, Charlotte F, Fisson S, et al. Recipient type specific CD4+CD25+ regulatory T cells favour immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2003;112:1688–96.CrossRefGoogle Scholar
  31. 31.
    Bolton HA, Zhu E, Terry AM, et al. Selective Treg reconstitution during lymphopenia normalizes DC costimulation and prevents graft-versus-host disease. J Clin Invest. 2015;125:3627–41.CrossRefGoogle Scholar
  32. 32.
    Gaidot A, Landau DA, Martin GH, et al. Immune reconstitution is preserved in hematopoietic stem cell transplantation coadministered with regulatory T cells for GVHD prevention. Blood. 2011;117:2975–83.CrossRefGoogle Scholar
  33. 33.
    Edinger M, Hoffmann P, Ermann J, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50.CrossRefGoogle Scholar
  34. 34.
    Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44.CrossRefGoogle Scholar
  35. 35.
    Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8.CrossRefGoogle Scholar
  36. 36.
    Brunstein CG, Miller JS, McKenna DH, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016;127:1044–51.CrossRefGoogle Scholar
  37. 37.
    Brunstein CG, Miller JS, Cao Q, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood. 2011;117:1061–70.CrossRefGoogle Scholar
  38. 38.
    Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.PubMedGoogle Scholar
  39. 39.
    Vence L, Palucka AK, Fay JW, et al. Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2007;104:20884–9.CrossRefGoogle Scholar
  40. 40.
    Kelley TW, Parker CJ. CD4(+)CD25(+)FoxP3(+) regulatory T cells and haematological malignancies. Front Biosci. 2010;2:980–2.CrossRefGoogle Scholar
  41. 41.
    Ustun C, Miller JS, Munn DH, et al. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.CrossRefGoogle Scholar
  42. 42.
    Ruggeri L, Di Ianni M, Falzetti F. Preventing GvHD and high-risk acute leukemia relapse by Treg and Tcon adoptive immunotherapy in HLA haploidentical transplantation: an update on the clinical trial and insights from murine studies. In Abstract EBMT, Istanbul; 2015.Google Scholar
  43. 43.
    Booth NJ, McQuaid AJ, Sobande T, et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol. 2010;184:4317–26.CrossRefGoogle Scholar
  44. 44.
    Fujisaki J, Wu J, Carlson AL, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.CrossRefGoogle Scholar
  45. 45.
    Wong JYC, Liu A, Schultheiss T, et al. Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol Blood Marrow Transplant. 2006;12:306–15.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Massimo F. Martelli
    • 1
  • Mauro Di Ianni
    • 1
    • 2
  • Loredana Ruggeri
    • 1
  1. 1.Division of Hematology and Clinical Immunology, Department of MedicineUniversity of PerugiaPerugiaItaly
  2. 2.Department of Medicine and Aging SciencesUniversity of Chieti-PescaraPescaraItaly

Personalised recommendations