Advertisement

Selective Allo-depletion: TcRαβ and CD19+ T-Cell Depletion

  • Franco Aversa
  • Peter Lang
  • Rupert Handgretinger
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

Haploidentical hematopoietic cell transplantation is a curative alternative option for patients without an otherwise HLA-matched suitable donor. In order to prevent graft-versus-host disease, different in vitro and in vivo T-cell depletion strategies have been developed. A delayed immune reconstitution is common to all these strategies, and an impaired immune function after haploidentical transplantation with subsequent infections is a major cause of deaths in these patients. Attempts to improve immune reconstitution and to better exploit the graft-versus-malignancy effect after transplantation of T-cell-depleted grafts through the preservation of immune effector cells led to the development of the TcRαβ-/CD19-negative depletion strategy of mobilized peripheral blood grafts. A faster immune reconstitution has been observed in patients with negatively depleted grafts after haploidentical transplantation, although no prospective randomized trials have been reported to date. In this chapter, the recent clinical data obtained with TcRαβ-depleted haploidentical grafts in children and adult patients will be described, and the role of haploidentical transplantation of TcRαβ-depleted grafts as a platform for posttransplant immunotherapy will be discussed.

Keywords

T-cell depletion Immunotherapy GvHD NK cells Negative selection T-cell haploidentical transplant 

Notes

Conflict of Interest

R.H. is a co-patent holder of TcRαβ depletion.

References

  1. 1.
    Champlin RE, Passweg JR, Zhang MJ, Rowlings PA, Pelz CJ, Atkinson KA, et al. TCD of bone marrow transplants for leukemia from donors other than HLA-identical siblings: advantage of T-cell antibodies with narrow specificities. Blood. 2000;95(12):3996–4003.PubMedGoogle Scholar
  2. 2.
    Schumm M, Lang P, Taylor G, Kuci S, Klingebiel T, Buhring HJ, et al. Isolation of highly purified autologous and allogeneic peripheral CD34+ cells using the CliniMACS device. J Hematother. 1999;8(2):209–18.CrossRefGoogle Scholar
  3. 3.
    Handgretinger R, Klingebiel T, Lang P, Schumm M, Neu S, Geiselhart A, et al. Megadose transplantation of purified peripheral blood CD34(+) progenitor cells from HLA-mismatched parental donors in children. Bone Marrow Transplant. 2001;27(8):777–83.CrossRefGoogle Scholar
  4. 4.
    Gordon PR, Leimig T, Mueller I, Babarin-Dorner A, Holladay MA, Houston J, et al. A large-scale method for T cell depletion: towards graft engineering of mobilized peripheral blood stem cells. Bone Marrow Transplant. 2002;30(2):69–74.CrossRefGoogle Scholar
  5. 5.
    Barfield RC, Otto M, Houston J, Holladay M, Geiger T, Martin J, et al. A one-step large-scale method for T- and B-cell depletion of mobilized PBSC for allogeneic transplantation. Cytotherapy. 2004;6(1):1–6.CrossRefGoogle Scholar
  6. 6.
    Chaleff S, Otto M, Barfield RC, Leimig T, Iyengar R, Martin J, et al. A large-scale method for the selective depletion of alphabeta T lymphocytes from PBSC for allogeneic transplantation. Cytotherapy. 2007;9(8):746–54.CrossRefGoogle Scholar
  7. 7.
    Schumm M, Lang P, Bethge W, Faul C, Feuchtinger T, Pfeiffer M, et al. Depletion of T-cell receptor alpha/beta and CD19 positive cells from apheresis products with the CliniMACS device. Cytotherapy. 2013;15(10):1253–8.CrossRefGoogle Scholar
  8. 8.
    Li Para G, Malaspina D, Girolami E, Biagini S, Cicchetti E, Conflitti G, et al. Removal of alphabeta T-cells and B-cells for HLA haploidentical HSCT: procedure robustness and reliability after three-year experience. Bone Marrow Transplant. 2016;51(S1):S159.Google Scholar
  9. 9.
    Schumm M, Handgretinger R, Pfeiffer M, Feuchtinger T, Kuci S, Faul C, et al. Determination of residual T- and B-cell content after immunomagnetic depletion: proposal for flow cytometric analysis and results from 103 separations. Cytotherapy. 2006;8(5):465–72.CrossRefGoogle Scholar
  10. 10.
    Bremm M, Brehm C, Erben S, Jarisch A, Schumm M, Arendt A, et al. Generation and flow cytometric quality control of clinical-scale TCRalphabeta/CD19-depleted grafts. Cytometry B Clin Cytom. 2017;92(2):126–35.CrossRefGoogle Scholar
  11. 11.
    Lang P, Feuchtinger T, Teltschik HM, Schwinger W, Schlegel P, Pfeiffer M, et al. Improved immune recovery after transplantation of TCRalphabeta/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10.  https://doi.org/10.1038/bmt.2015.87.CrossRefGoogle Scholar
  12. 12.
    Bertaina A, Lucarelli B, Pende D, Pagliara D, Merli P, Falco M, et al. Comparable outcome in children with acute leukemia given hematopoietic stem cell transplantation (HSCT) either from ab HLA-compatible sibling, an unrelated donor (UD) or an HLA-haploidentical relative after alpha/beta T-cell depletion. Bone Marrow Transplant. 2016;51(S1):S147.Google Scholar
  13. 13.
    Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6.CrossRefGoogle Scholar
  14. 14.
    Airoldi I, Bertaina A, Prigione I, Zorzoli A, Pagliara D, Cocco C, et al. gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+ lymphocytes. Blood. 2015;125(15):2349–58.CrossRefGoogle Scholar
  15. 15.
    Muccio L, Bertaina A, Falco M, Pende D, Meazza R, Lopez-Botet M, et al. Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing alphabeta+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica. 2016;101(3):371–81.CrossRefGoogle Scholar
  16. 16.
    Im HJ, Koh KN, Seo JJ. Recent advances in haploidentical hematopoietic stem cell transplantation using ex vivo T cell-depleted graft in children and adolescents. Blood Res. 2016;51(1):8–16.CrossRefGoogle Scholar
  17. 17.
    Maschan M, Shelikhova L, Ilushina M, Kurnikova E, Boyakova E, Balashov D, et al. TCR-alpha/beta and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016;51(5):668–74.CrossRefGoogle Scholar
  18. 18.
    Karakukcu M, Ünal E, Yilmaz E, Özcan A, Ucan G, Patiroglu T, et al. TcRalphabeta (+) depleted haploidentical hematopoietic stem cell transplantation in children: the single center experiences. Bone Marrow Transplant. 2016;51(S1):S354.Google Scholar
  19. 19.
    Park M, Im HJ, Koh KN, Jang S, Seo JJ. Reconstitution of T cell subsets after haploidentical hematopoietic cell transplantation using alpha beta T cell-depleted grafts and the clinical implication of gamma delta T cells. Bone Marrow Transplant. 2016;51(S1):S29.Google Scholar
  20. 20.
    Tumino M, Mainardi C, Pillon M, Calore E, Gazzola MV, Destro R, et al. Haploidentical TCR A/B and B-cell depleted hematopoietic SCT in pediatric SAA and aspergillosis. Bone Marrow Transplant. 2014;49(6):847–9.CrossRefGoogle Scholar
  21. 21.
    Kharya G, Nademi Z, Leahy TR, Dunn J, Barge D, Schulz A, et al. Haploidentical T-cell alpha beta receptor and CD19-depleted stem cell transplant for Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2014;134(5):1199–201.CrossRefGoogle Scholar
  22. 22.
    Ghosh S, Schuster FR, Adams O, Babor F, Borkhardt A, Comoli P, et al. Haploidentical stem cell transplantation in DOCK8 deficiency—successful control of pre-existing severe viremia with a TCRass/CD19-depleted graft and antiviral treatment. Clin Immunol. 2014;152(1–2):111–4.CrossRefGoogle Scholar
  23. 23.
    Brodszki N, Turkiewicz D, Toporski J, Truedsson L, Dykes J. Novel treatment of severe combined immunodeficiency utilizing ex-vivo T-cell depleted haploidentical hematopoietic stem cell transplantation and CD45RA+ depleted donor lymphocyte infusions. Orphanet J Rare Dis. 2016;11:5.  https://doi.org/10.1186/s13023-016-0385-3.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kaynar L, Demir K, Pala Öztürk C, Zararsiz G, Gönen ZB, Sivgin S, et al. Immune recovery after transplantation of TCR alphabeta depleted allografts from haploidentical donors in adult patients. Bone Marrow Transplant. 2016;51(S1):S159.Google Scholar
  25. 25.
    Lang P, Schlegel PG, Meisel R, Schulz A, Greil J, Bader P, Karitzky S, Holtkamp S, Siewert C, Schumm M, Eyrich M, Wiesneth M, Bönig H, Handgretinger R. TCRalpha/beta and CD19 depleted haploidentical stem cell transplantation following reduced intensity conditioning in children: first results of a prospective multicenter phase I/II clinical trial. Oral presentation at the 43rd annual meeting of the European Society for Blood and Marrow Transplantation, 26–29 March 2017, Marseille, France.Google Scholar
  26. 26.
    Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23(15):3447–54.CrossRefGoogle Scholar
  27. 27.
    Oevermann L, Michaelis SU, Mezger M, Lang P, Toporski J, Bertaina A, et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood. 2014;124(17):2744–7.CrossRefGoogle Scholar
  28. 28.
    Lang P, Barbin K, Feuchtinger T, Greil J, Peipp M, Zunino SJ, et al. Chimeric CD19 antibody mediates cytotoxic activity against leukemic blasts with effector cells from pediatric patients who received T-cell-depleted allografts. Blood. 2004;103(10):3982–5.CrossRefGoogle Scholar
  29. 29.
    Della CM, Moretta L, Muccio L, Bertaina A, Moretta F, Locatelli F, et al. Haploidentical haematopoietic stem cell transplantation: role of NK cells and effect of cytomegalovirus infections. Curr Top Microbiol Immunol. 2016;395:209–24.Google Scholar
  30. 30.
    Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665–74.CrossRefGoogle Scholar
  31. 31.
    Schlegel P, Teltschik HM, Pfeiffer M, Handgretinger R, Schumm M, Koscielniak E, et al. Long-term IL-2 therapy after transplantation of T cell depleted stem cells from alternative donors in children. Best Pract Res Clin Haematol. 2011;24(3):443–52.CrossRefGoogle Scholar
  32. 32.
    Knorr DA, Bachanova V, Verneris MR, Miller JS. Clinical utility of natural killer cells in cancer therapy and transplantation. Semin Immunol. 2014;26(2):161–72.CrossRefGoogle Scholar
  33. 33.
    Otto M, Barfield RC, Iyengar R, Gatewood J, Muller I, Holladay MS, et al. Human gammadelta T cells from G-CSF-mobilized donors retain strong tumoricidal activity and produce immunomodulatory cytokines after clinical-scale isolation. J Immunother. 2005;28(1):73–8.CrossRefGoogle Scholar
  34. 34.
    Seidel UJ, Vogt F, Grosse-Hovest L, Jung G, Handgretinger R, Lang P. Gammadelta T cell-mediated antibody-dependent cellular cytotoxicity with CD19 antibodies assessed by an impedance-based label-free real-time cytotoxicity assay. Front Immunol. 2014;5:618.  https://doi.org/10.3389/fimmu.2014.00618. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nussbaumer O, Gruenbacher G, Gander H, Komuczki J, Rahm A, Thurnher M. Essential requirements of zoledronate-induced cytokine and gammadelta T cell proliferative responses. J Immunol. 2013;191(3):1346–55.CrossRefGoogle Scholar
  36. 36.
    Gertner-Dardenne J, Bonnafous C, Bezombes C, Capietto AH, Scaglione V, Ingoure S, et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood. 2009;113(20):4875–84.CrossRefGoogle Scholar
  37. 37.
    Schlegel P, Lang P, Zugmaier G, Ebinger M, Kreyenberg H, Witte KE, et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica. 2014;99(7):1212–9.CrossRefGoogle Scholar
  38. 38.
    Caccamo N, Meraviglia S, Scarpa F, La MC, Santini D, Bonanno CT, et al. Aminobisphosphonate-activated gammadelta T cells in immunotherapy of cancer: doubts no more. Expert Opin Biol Ther. 2008;8(7):875–83.CrossRefGoogle Scholar
  39. 39.
    Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):4360–7.CrossRefGoogle Scholar
  40. 40.
    Feuchtinger T, Matthes-Martin S, Richard C, Lion T, Fuhrer M, Hamprecht K, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.CrossRefGoogle Scholar
  41. 41.
    Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, et al. Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol. 2013;31(1):39–48.CrossRefGoogle Scholar
  42. 42.
    Singh N, Barrett DM. Donor-derived CD19 chimeric antigen receptor T cells. Curr Opin Hematol. 2015;22(6):503–8.CrossRefGoogle Scholar
  43. 43.
    Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, Wels WS, et al. CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med. 2016;20(7):1287–94.CrossRefGoogle Scholar
  44. 44.
    Pfeiffer MM, Schumm M, Muller I, Handgretinger R, Lang P. IL-15-stimulated CD3/CD19-depleted stem-cell boosts in relapsed pediatric patients after haploidentical SCT. Leukemia. 2012;26(11):2435–9.CrossRefGoogle Scholar
  45. 45.
    Rettinger E, Huenecke S, Bonig H, Merker M, Jarisch A, Soerensen J, et al. Interleukin-15-activated cytokine-induced killer cells may sustain remission in leukemia patients after allogeneic stem cell transplantation: feasibility, safety and first insights on efficacy. Haematologica. 2016;101(4):e153–6.CrossRefGoogle Scholar
  46. 46.
    Kayser S, Bobeta C, Feucht J, Witte KE, Scheu A, Bulow HJ, et al. Rapid generation of NY-ESO-1-specific CD4 T1 cells for adoptive T-cell therapy. Oncoimmunology. 2015;4(5):e1002723.CrossRefGoogle Scholar
  47. 47.
    Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia. 2016;30(4):1003–4.CrossRefGoogle Scholar
  48. 48.
    Granzin M, Soltenborn S, Muller S, Kollet J, Berg M, Cerwenka A, et al. Fully automated expansion and activation of clinical-grade natural killer cells for adoptive immunotherapy. Cytotherapy. 2015;17(5):621–32.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Franco Aversa
    • 1
  • Peter Lang
    • 2
  • Rupert Handgretinger
    • 2
    • 3
  1. 1.Hematology and BMT UnitUniversity of ParmaParmaItaly
  2. 2.Department of Hematology/OncologyChildren’s University Hospital, University of TuebingenTuebingenGermany
  3. 3.Department of General Pediatrics, Children’s University HospitalUniversity of TuebingenTuebingenGermany

Personalised recommendations