Advertisement

Haploidentical Transplants: Immune Reconstitution With and Without Augmentation Strategies

  • Antonio Di Stasi
  • Leo Luznik
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) is a lifesaving procedure for many neoplastic and nonmalignant hematologic disorders. As in HLA-matched transplantation, T-cell recovery after haplo-HCT relies on peripheral expansion of T-cells infused with the graft and the thymic reconstitution mediated by the precursors emerging from the donor progenitor cells. The reconstitution of T-cells in thymus is a slower process in adults, which usually explains a slower reconstitution in adults compared with children. CD4+ T-cells reconstitute later than CD8+ T-cells and depend more on thymic generation of naive T-cells with resulting inverted CD4+/CD8+ ratio earlier after allo-HCT. The B-cell compartment represents humoral immunity and in general has a slower recovery rate, as compared with T-cell compartment after allo-HCTs. The use of HLA-haploidentical donors has extended the applicability of allo-HCT for patients without HLA-matched donors. In this chapter we attempt to discuss current understanding of immune recovery and strategies to augment immune reconstitution after haploidentical transplantation.

Keywords

Haploidentical transplants Immune CD4 CD8 Infections GvHD Relapse Mortality T-cell depletion Posttransplant Cyclophosphamide 

References

  1. 1.
    Singh AK, McGuirk JP. Allogeneic stem cell transplantation: a historical and scientific overview. Cancer Res. 2016;76:6445–51.CrossRefGoogle Scholar
  2. 2.
    Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.CrossRefGoogle Scholar
  3. 3.
    Anasetti C, Logan BR, Lee SJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96.CrossRefGoogle Scholar
  4. 4.
    Ogonek J, Kralj Juric M, Ghimire S, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:507.CrossRefGoogle Scholar
  5. 5.
    Chaudhry MS, Velardi E. Immune reconstitution after allogeneic hematopoietic stem cell transplantation: time to T up the thymus. J Immunol. 2017;198:40–6.CrossRefGoogle Scholar
  6. 6.
    Powles R. 50 years of allogeneic bone-marrow transplantation. Lancet Oncol. 2010;11:305–6.CrossRefGoogle Scholar
  7. 7.
    Bachar-Lustig E, Rachamim N, Li HW, Lan F, Reisner Y. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med. 1995;1:1268–73.CrossRefGoogle Scholar
  8. 8.
    Ciurea SO, Mulanovich V, Saliba RM, et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18:1835–44.CrossRefGoogle Scholar
  9. 9.
    Kernan NA, Bordignon C, Heller G, et al. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants. Blood. 1989;74:2227–36.PubMedGoogle Scholar
  10. 10.
    Bordignon C, Keever CA, Small TN, et al. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: II. In vitro analyses of host effector mechanisms. Blood. 1989;74:2237–43.PubMedGoogle Scholar
  11. 11.
    Bastien JP, Krosl G, Therien C, et al. Photodepletion differentially affects CD4+ Tregs versus CD4+ effector T cells from patients with chronic graft-versus-host disease. Blood. 2010;116:4859–69.CrossRefGoogle Scholar
  12. 12.
    Ciceri F, Bonini C, Stanghellini MT, et al. Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol. 2009;10:489–500.CrossRefGoogle Scholar
  13. 13.
    Di Stasi A, Tey SK, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365:1673–83.CrossRefGoogle Scholar
  14. 14.
    Lang P, Feuchtinger T, Teltschik HM, et al. Improved immune recovery after transplantation of TCRalphabeta/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10.CrossRefGoogle Scholar
  15. 15.
    Airoldi I, Bertaina A, Prigione I, et al. Gammadelta T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-alphabeta+/CD19+ lymphocytes. Blood. 2015;125:2349–58.CrossRefGoogle Scholar
  16. 16.
    Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40.CrossRefGoogle Scholar
  17. 17.
    Luznik L, Bolanos-Meade J, Zahurak M, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115:3224–30.CrossRefGoogle Scholar
  18. 18.
    Kalwak K, Moson I, Cwian J, et al. A prospective analysis of immune recovery in children following allogeneic transplantation of t-cell-depleted or non-T-cell-depleted hematopoietic cells from HLA-disparate family donors. Transplant Proc. 2003;35:1551–5.CrossRefGoogle Scholar
  19. 19.
    Shilling HG, KL MQ, Cheng NW, Shizuru JA, Negrin RS, Parham P. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood. 2003;101:3730–40.CrossRefGoogle Scholar
  20. 20.
    Chklovskaia E, Nowbakht P, Nissen C, Gratwohl A, Bargetzi M, Wodnar-Filipowicz A. Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation: effects of endogenous flt3 ligand. Blood. 2004;103:3860–8.CrossRefGoogle Scholar
  21. 21.
    Nguyen S, Dhedin N, Vernant JP, et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood. 2005;105:4135–42.CrossRefGoogle Scholar
  22. 22.
    Savani BN, Mielke S, Adams S, et al. Rapid natural killer cell recovery determines outcome after T-cell-depleted HLA-identical stem cell transplantation in patients with myeloid leukemias but not with acute lymphoblastic leukemia. Leukemia. 2007;21:2145–52.CrossRefGoogle Scholar
  23. 23.
    Dunbar EM, Buzzeo MP, Levine JB, Schold JD, Meier-Kriesche HU, Reddy V. The relationship between circulating natural killer cells after reduced intensity conditioning hematopoietic stem cell transplantation and relapse-free survival and graft-versus-host disease. Haematologica. 2008;93:1852–8.CrossRefGoogle Scholar
  24. 24.
    Ciurea SO, Mulanovich V, Jiang Y, et al. Lymphocyte recovery predicts outcomes in cord blood and T cell-depleted haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:1169–75.CrossRefGoogle Scholar
  25. 25.
    Mulanovich VE, Jiang Y, de Lima M, Shpall EJ, Champlin RE, Ciurea SO. Infectious complications in cord blood and T-cell depleted haploidentical stem cell transplantation. Am J Blood Res. 2011;1:98–105.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Clave E, Lisini D, Douay C, et al. A low thymic function is associated with leukemia relapse in children given T-cell-depleted HLA-haploidentical stem cell transplantation. Leukemia. 2012;26(8):1886.CrossRefGoogle Scholar
  27. 27.
    Bayraktar UD, Milton DR, Guindani M, et al. Optimal Threshold and Time of Absolute Lymphocyte Count Assessment for Outcome Prediction after Bone Marrow Transplantation. Biol Blood Marrow Transplant. 2016;22:505–13.CrossRefGoogle Scholar
  28. 28.
    Chang YJ, Zhao XY, Huang XJ. Immune reconstitution after haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20:440–9.CrossRefGoogle Scholar
  29. 29.
    de Lalla C, Rinaldi A, Montagna D, et al. Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4− subset dynamics and correlates with remission state. J Immunol. 2011;186:4490–9.CrossRefGoogle Scholar
  30. 30.
    Al Malki MM, Horowitz M, Handgretinger R, et al. Proceedings from the second haploidentical stem cell transplantation symposium-Haplo2014, San Francisco, California, December 4, 2014. Biol Blood Marrow Transplant. 2016;22:594–604.CrossRefGoogle Scholar
  31. 31.
    Li Pira G, Di Cecca S, Montanari M, Moretta L, Manca F. Specific removal of alloreactive T-cells to prevent GvHD in hemopoietic stem cell transplantation: rationale, strategies and perspectives. Blood Rev. 2016;30:297–307.CrossRefGoogle Scholar
  32. 32.
    Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24.CrossRefGoogle Scholar
  33. 33.
    Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front Pharmacol. 2014;5:254.CrossRefGoogle Scholar
  34. 34.
    Godder KT, Henslee-Downey PJ, Mehta J, et al. Long term disease-free survival in acute leukemia patients recovering with increased gammadelta T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant. 2007;39:751–7.CrossRefGoogle Scholar
  35. 35.
    Locatelli F, Bauquet A, Palumbo G, Moretta F, Bertaina A. Negative depletion of alpha/beta+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett. 2013;155:21–3.CrossRefGoogle Scholar
  36. 36.
    Berenbaum MC, Brown IN. Prolongation of homograft survival in mice with single doses of cyclophosphamide. Nature. 1963;200:84.CrossRefGoogle Scholar
  37. 37.
    Santos GW, Owens AH. Production of graft-versus-host disease in the rat and its treatment with cytotoxic agents. Nature. 1966;210:139–40.CrossRefGoogle Scholar
  38. 38.
    Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.CrossRefGoogle Scholar
  39. 39.
    Gaballa S, Ge I, El Fakih R, et al. Results of a 2-arm, phase 2 clinical trial using post-transplantation cyclophosphamide for the prevention of graft-versus-host disease in haploidentical donor and mismatched unrelated donor hematopoietic stem cell transplantation. Cancer. 2016;122:3316–26.CrossRefGoogle Scholar
  40. 40.
    Raj K, Pagliuca A, Bradstock K, et al. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol Blood Marrow Transplant. 2014;20:890–5.CrossRefGoogle Scholar
  41. 41.
    Ross D, Jones M, Komanduri K, Levy RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2013;19:1430–8.CrossRefGoogle Scholar
  42. 42.
    Cieri N, Oliveira G, Greco R, et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood. 2015;125:2865–74.CrossRefGoogle Scholar
  43. 43.
    Kanakry CG, Ganguly S, Zahurak M, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157.CrossRefGoogle Scholar
  44. 44.
    Ganguly S, Ross DB, Panoskaltsis-Mortari A, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124:2131–41.CrossRefGoogle Scholar
  45. 45.
    Blaise D, Furst S, Crocchiolo R, et al. Haploidentical T cell-replete transplantation with post-transplantation cyclophosphamide for patients in or above the sixth decade of age compared with allogeneic hematopoietic stem cell transplantation from an human leukocyte antigen-matched related or unrelated donor. Biol Blood Marrow Transplant. 2016;22:119–24.CrossRefGoogle Scholar
  46. 46.
    Di Stasi A, Milton DR, Poon LM, et al. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leukocyte antigen-matched unrelated and related donors. Biol Blood Marrow Transplant. 2014;20:1975–81.CrossRefGoogle Scholar
  47. 47.
    Bashey A, Zhang X, Sizemore CA, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–6.CrossRefGoogle Scholar
  48. 48.
    Raiola AM, Dominietto A, di Grazia C, et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant. 2014;20:1573–9.CrossRefGoogle Scholar
  49. 49.
    Kanate AS, Mussetti A, Kharfan-Dabaja MA, et al. Reduced-intensity transplantation for lymphomas using haploidentical related donors vs HLA-matched unrelated donors. Blood. 2016;127:938–47.CrossRefGoogle Scholar
  50. 50.
    Amrolia PJ, Muccioli-Casadei G, Huls H, et al. Adoptive immunotherapy with allodepleted donor T-cells improves immune reconstitution after haploidentical stem cell transplantation. Blood. 2006;108:1797–808.CrossRefGoogle Scholar
  51. 51.
    Zhou X, Di Stasi A, Tey SK, et al. Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood. 2014;123:3895–905.CrossRefGoogle Scholar
  52. 52.
    Zhou X, Dotti G, Krance RA, et al. Inducible caspase-9 suicide gene controls adverse effects from alloreplete T cells after haploidentical stem cell transplantation. Blood. 2015;125:4103–13.CrossRefGoogle Scholar
  53. 53.
    Traversari C, Marktel S, Magnani Z, et al. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood. 2007;109:4708–15.CrossRefGoogle Scholar
  54. 54.
    Garin MI, Garrett E, Tiberghien P, et al. Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood. 2001;97:122–9.CrossRefGoogle Scholar
  55. 55.
    Vago L, Oliveira G, Bondanza A, et al. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood. 2012;120:1820–30.CrossRefGoogle Scholar
  56. 56.
    Bleakley M, Turtle CJ, Riddell SR. Augmentation of anti-tumor immunity by adoptive T-cell transfer after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol. 2012;5:409–25.CrossRefGoogle Scholar
  57. 57.
    Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8.CrossRefGoogle Scholar
  58. 58.
    Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44.CrossRefGoogle Scholar
  59. 59.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells and hematopoietic stem cell transplantation. Immunol Lett. 2015;168:215–21.CrossRefGoogle Scholar
  60. 60.
    Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science (New York, NY). 2002;295:2097–100.CrossRefGoogle Scholar
  61. 61.
    Farhan S, Lee DA, Champlin RE, Ciurea SO. NK cell therapy: targeting disease relapse after hematopoietic stem cell transplantation. Immunotherapy. 2012;4:305–13.CrossRefGoogle Scholar
  62. 62.
    Kongtim P, Lee DA, Cooper LJ, Kebriaei P, Champlin RE, Ciurea SO. Haploidentical hematopoietic stem cell transplantation as a platform for post-transplantation cellular therapy. Biol Blood Marrow Transplant. 2015;21:1714–20.CrossRefGoogle Scholar
  63. 63.
    Miller JS, Soignier Y, Panoskaltsis-Mortari A, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.CrossRefGoogle Scholar
  64. 64.
    Ciurea SO, Lee DA, Denman C, et al. Safety and feasibility of administration of high doses of ex vivo expanded nk cells for prevention of disease relapse after transplantation for patients with myeloid malignancies—final results of a phase I clinical trial. Blood. 2016;128:500.Google Scholar
  65. 65.
    Greco R, Crucitti L, Noviello M, et al. Human Herpesvirus 6 infection following haploidentical transplantation: immune recovery and outcome. Biol Blood Marrow Transplant. 2016;22:2250–5.CrossRefGoogle Scholar
  66. 66.
    Ruggeri A, Roth-Guepin G, Battipaglia G, et al. Incidence and risk factors for hemorrhagic cystitis in unmanipulated haploidentical transplant recipients. Transpl Infect Dis. 2015;17:822–30.CrossRefGoogle Scholar
  67. 67.
    Tzannou I, Leen AM. Accelerating immune reconstitution after hematopoietic stem cell transplantation. Clin Transl Immunol. 2014;3:e11.CrossRefGoogle Scholar
  68. 68.
    Oliveira G, Greco R, Lupo-Stanghellini MT, Vago L, Bonini C. Use of TK-cells in haploidentical hematopoietic stem cell transplantation. Curr Opin Hematol. 2012;19:427–33.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bone Marrow Transplantation and Cellular TherapyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Oncology, Hematologic MalignanciesJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations