Advertisement

A Scope of the Possibilities of Bayesian Inference + MCMC

  • Agustín Blasco
Chapter

Abstract

Bayesian analysis can be applied in all fields of animal production in which statistics is needed. We have seen hitherto how useful Bayesian analysis is for the standard linear model, including mixed models. We have faced common problems like comparison among treatments, regression and covariates, genetic merit prediction, variance components estimation and so on. Now we will try to see some of the possibilities of Bayesian analyses in models that are more complex. It is out of the scope of this book to have an encyclopaedic list of all possible problems that Bayesian analysis can handle. What we will do, however, is to carry out a close examination to some difficult problems and outline their Bayesian solution. We have chosen three examples that have no solution using classical statistics, or for which the classical solution is not straightforward.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129:2323–2332CrossRefGoogle Scholar
  2. Blasco A, Martínez-Álvaro M, García ML, Ibáñez-Escriche N, Argente MJ (2017) Selection for environmental variance of litter size in rabbits. Genet Sel Evol 49:48Google Scholar
  3. Blasco A, Piles M, Varona L (2003) A Bayesian analysis of the effect of selection for growth rate on growth curves in rabbits. Genet Sel Evol 35:21–42CrossRefGoogle Scholar
  4. Blasco A, Toro MA (2014) A short critical history of the application of genomics to animal breeding. Livest Sci 166:4–9CrossRefGoogle Scholar
  5. Clark SA, van der Werf J (2013) Genomic best linear unbiased prediction (gBLUP) for the estimation of genomic breeding values. In: Gondro C, van der Werf J, Hayes B (eds) Genome-wide association studies and genomic prediction. Humana Press, New YorkGoogle Scholar
  6. Colombani C, Croiseau P, Fritz S, Guillaume F, Legarra A, Ducrocq V, Robert-Granié C (2012) A comparison of partial leastsquares (PLS) and sparse PLS regressions in genomic selection in French dairy cattle. J Dairy Sci 95:2120–2131CrossRefGoogle Scholar
  7. de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E, Weigel K, Cotes JM (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genetics 182:375–385CrossRefGoogle Scholar
  8. Fernando RL, Garrick D (2013) Bayesian methods applied to GWAS. In: Gondro C, van der Werf J, Hayes B (eds) Genome-wide association studies and genomic prediction. Humana Press, New YorkGoogle Scholar
  9. Fernando RL, Habier D, Stricker C, Dekkers JCM, Totir LR (2007) Genomic selection. Acta Agric Scand A 57:192–195Google Scholar
  10. Forni S, Aguilar I, Misztal I (2011) Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genet Sel Evol 43:1CrossRefGoogle Scholar
  11. García ML, Argente MJ, Muelas R, Birlanga V, Blasco A (2012) Effect of divergent selection for residual variance of litter size on health status and welfare. In: 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3–6 September 2012, pp 103−106Google Scholar
  12. Garcia M, David I, Garreau H, Ibanez-Escriche N, Mallard J, Masson JP, Pommeret D, Robert-Granie C, Bodin L (2009) Comparisons of three models for canalising selection or genetic robustness. In: 60th annual meeting of European Association for Animal Production. Spain, BarcelonaGoogle Scholar
  13. Gianola D (2013) Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194:573–596CrossRefGoogle Scholar
  14. Gianola D, de los Campos G, Hil WG, Manfredi E, Fernando RL (2009) Additive genetic variability and the Bayesian alphabet. Genetics 183:347–363CrossRefGoogle Scholar
  15. Goddard M (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257CrossRefGoogle Scholar
  16. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397PubMedPubMedCentralGoogle Scholar
  17. Habier D, Fernando RL, Kizilkaya K, Garrick D (2011) Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186CrossRefGoogle Scholar
  18. Hill WG, Mulder HA (2010) Genetic analysis of environmental variation. Genet Res 92:381–395CrossRefGoogle Scholar
  19. Hill WG, Zhang XS (2004) Effects on phenotypic variability of directional selection arising through genetic differences in residual variability. Genet Res 83:121–132 (Erratum 83, 160)CrossRefGoogle Scholar
  20. Ibáñez-Escriche N, Garcia M, Sorensen D (2010) GSEVMv.2: MCMC software to analyze genetically structured environmental variance models. J Anim Breed Genet 127:249–251CrossRefGoogle Scholar
  21. Ibañez-Escriche N, Sorensen D, Waagepetersen R, Blasco A (2008) Selection for environmental variation: a statistical analysis and power calculations to detect response. Genetics 180:2209–2226CrossRefGoogle Scholar
  22. López de Maturana E, Ibañez-Escriche N, González-Recio O, Marenne G, Mehrban H, Chanok SJ, Goddard M, Malats N (2014) Next generation modeling in GWAS: a comparison study among different genetic architectures. Hum Genet 123:1235–1253CrossRefGoogle Scholar
  23. McGrayne SB (2011) The theory that would not die. Yale University Press, New Haven, NJGoogle Scholar
  24. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  25. Park T, Casella G (2008) The Bayesian LASSO. J Am Stat Assoc 103:681–686CrossRefGoogle Scholar
  26. Piles M, Gianola D, Varona L, Blasco A (2003) Bayesian inference about parameters of a longitudinal trajectory when selection operates on a correlated trait. J Anim Sci 81:2714–2724CrossRefGoogle Scholar
  27. SanCristobal M, Elsen JM, Bodin L, Chevalet C (1998) Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genet Sel Evol 30:423–451CrossRefGoogle Scholar
  28. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc B 58:267–288Google Scholar
  29. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24CrossRefGoogle Scholar
  30. Vitezica ZG, Varona L, Legarra A (2013) On the additive and dominant Variance and covariance of individuals within the genomic selection scope. Genetics 195:1223–1230CrossRefGoogle Scholar
  31. Yang Y, Christensen OF, Sorensen D (2011) Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation. Genet Res 93:33–46CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Agustín Blasco
    • 1
  1. 1.Institute of Animal Science and TechnologyUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations