Advertisement

Do We Understand Classic Statistics?

  • Agustín Blasco
Chapter

Abstract

In this chapter, we review the classical statistical concepts and procedures, test of hypothesis, standard errors and confidence intervals, unbiased estimators, maximum likelihood, etc., and we examine the most common misunderstandings about them. We will see the limitations of classical statistics in order to stress the advantages of using Bayesian procedures in the following chapters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett V (1999) Comparative statistical inference. Wiley, ChichesterCrossRefGoogle Scholar
  2. Bayarri MJ, Berger JO (2004) The interplay of Bayesian and frequentist analysis. Stat Sci 19:58–80CrossRefGoogle Scholar
  3. Bellhouse DR (2004) The Reverend Thomas Bayes, FRS: a biography to celebrate the tercentenary of his birth. Stat Sci 19:3–43CrossRefGoogle Scholar
  4. Berger JO, Sellke T (1987) Testing a point null hypothesis: the irreconcilability of P-values and evidence. J Amer Stat Assoc 82:112–122Google Scholar
  5. Berger JO, Wolpert RL (1984) The likelihood principle, Institute of Mathematical Statistics. Lecture Notes—Monograph Series. Purdue UniversityGoogle Scholar
  6. Berkson J (1938) Some difficulties of interpretation encountered in the application of the chi-squaretest. J Am Stat Assoc 33:526–542CrossRefGoogle Scholar
  7. Blasco A (2001) The Bayesian controversy in animal breeding. J Anim Sci 79:2023–2046CrossRefGoogle Scholar
  8. Childers T (2013) Philosophy and probability. Oxford University Press, OxfordGoogle Scholar
  9. de Finetti B (1937) La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincairé 7:1–68. Translated in Kyburg HE, Smokler HE (1964) Studies in subjective probability. Wiley, New YorkGoogle Scholar
  10. Efron B, Hastie T (2016) Computer age statistical inference. Cambridge University Press, New YorkCrossRefGoogle Scholar
  11. Fienberg SE (2006) When did Bayesian inference become “Bayesian”? Bayesian Anal 1:1–40CrossRefGoogle Scholar
  12. Fisher RA (1912) On an absolute criterion for fitting frequency curves. Messenger Math 41:155–160. Reprinted in Stat Sci 1997, 12:39–41Google Scholar
  13. Fisher R (1921) On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1:3–32Google Scholar
  14. Fisher R (1922) On the mathematical foundations of theoretical statistics. Phil Trans A 222:309–368CrossRefGoogle Scholar
  15. Fisher R (1925) Statistical methods for research workers. Oliver and Boyd, EdinburghGoogle Scholar
  16. Fisher R (1935) The logic of inductive inference. J R Stat Soc 98:39–82CrossRefGoogle Scholar
  17. Fisher R (1950) Contributions to mathematical statistics. Wiley, New YorkGoogle Scholar
  18. Fisher R (1959) Statistical methods and scientific inference, 2nd edn. Oliver and Boyd, EdinburghGoogle Scholar
  19. Gauss CF (1809) Theoria motus corporum coelestium in sectionibus conicis solem ambientium (trans: Davis CE, 1963). Dover, New YorkGoogle Scholar
  20. Gelfand AE, Smith FM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat Assoc 85:398–409CrossRefGoogle Scholar
  21. Geman S, Geman D (1986) Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–742Google Scholar
  22. Goodman SN (1993) p-values, hypothesis tests and likelihood: implications for epidemiology of a neglected historical debate. Am J Epidemiol 137:485–496CrossRefGoogle Scholar
  23. Hald A (1998) A history of mathematical statistics from 1750 to 1930. Wiley, New YorkGoogle Scholar
  24. Henderson CR (1973) Sire evaluation and genetic trends. In: Proc. Anim. Breed. and Genet. Symp. in honor of Dr. J. L. Lush. Blacksburg, Virginia, pp 10–41CrossRefGoogle Scholar
  25. Howie D (2002) Interpreting probability: controversies and developments in the early twentieth century. Cambridge University Press, New YorkCrossRefGoogle Scholar
  26. Jeffreys H (1939/1961). Theory of probabilities, 1st and 3rd edn. Clarendon Press, OxfordGoogle Scholar
  27. Johnson DH (1999) The insignificance of statistical significance testing. J Wildl Manag 63:763–772CrossRefGoogle Scholar
  28. Johnson VE (2013) Revised standards for statistical evidence. Proc Natl Acad Sci 110:9313–19317Google Scholar
  29. Kendall MG (1961) Daniel Bernoulli on maximum likelihood. Biometrika 48:1–8CrossRefGoogle Scholar
  30. Kendall M, Stuart A, Ord K (1994) Kendall’s advanced theory of statistics, volume 1: distribution theory. Arnold, LondonGoogle Scholar
  31. Lecoutre B, Poitevineau J (2014) The significance test controversy revisited. Springer, New YorkGoogle Scholar
  32. Lundgren H, Canario L, Grandinson K, Lundeheim N, Zumbach B, Vangen O, Rydhmer L (2010) Genetic analysis of reproductive performance in Landrace sows and its correlation to piglet growth. Livest Sci 128:173–178CrossRefGoogle Scholar
  33. McGrayne SB (2011) The theory that would not die. Yale University Press, New Haven, NJGoogle Scholar
  34. Metropolis N (1987) The beginning of the Monte Carlo method. Los Alamos Sci 15(Special Issue):125–130Google Scholar
  35. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341CrossRefGoogle Scholar
  36. Mill JS (1848) On liberty. Reprinted in 2006 by LongmanGoogle Scholar
  37. Neyman J (1977) Frequentist probability and frequentist statistics. Synthese 36:97–131CrossRefGoogle Scholar
  38. Neyman J, Pearson E (1933) On the problem of the most efficient test of statistical hypotheses. Phil Trans R Soc 231A:289–337CrossRefGoogle Scholar
  39. Popper K (1934) Logik der Forschung. SpringerGoogle Scholar
  40. Ramsey FP (1931) Truth and probability. In: Braithwaite RB (ed) The foundation of mathematics and other logical essays. Routledge & Kegan, LondonGoogle Scholar
  41. Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6:15–51CrossRefGoogle Scholar
  42. Sellke T, Bayarri MJ, Berger JO (2001) Calibration of P-values for testing precise null hypotheses. Am Stat 55:62–71CrossRefGoogle Scholar
  43. Sorensen DA, Wang CS, Jensen J, Gianola D (1994) Bayesian analysis of genetic change due to selection using Gibbs sampling. Genet Sel Evol 26:333–360CrossRefGoogle Scholar
  44. Stigler SM (1983) Who discovered Bayes theorem? Am Stat 37:290–296Google Scholar
  45. Stigler SM (2013) The true title of Bayes’s essay. Stat Sci 28(3):283–288CrossRefGoogle Scholar
  46. Student (1908) On the probable error of a mean. Biometrika 6:1–25CrossRefGoogle Scholar
  47. Tribout T, Caritez JC, Gruand J, Bouffaud M, Guillouet P, Billon Y, Péry C, Laville E, Bidanel JP (2010) Estimation of genetic trends in French Large White pigs from 1977 to 1998 for growth and carcass traits using frozen semen. J Anim Sci 88:2856–2867CrossRefGoogle Scholar
  48. Visscher PM (1998) On the sampling variance of intraclass correlations and genetic correlations. Genetics 149:1605–1614PubMedPubMedCentralGoogle Scholar
  49. Von Mises R (1928/1957) Probability statistics and truth. Macmillan Publ. Co., LondonGoogle Scholar
  50. Wang CS, Gianola D, Sorensen DA, Jensen J, Christensen A, Rutledge JJ (1994) Response to selection for litter size in Danish Landrace pigs: a Bayesian analysis. Theor Appl Genet 88:220–230PubMedGoogle Scholar
  51. Yates F (1990) Preface of statistical methods, experimental design, and scientific inference by R.A. Fisher. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Agustín Blasco
    • 1
  1. 1.Institute of Animal Science and TechnologyUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations