Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 514 Accesses

Abstract

This chapter discusses the advantages of short pulse lasers over cw laser sources for biomedical imaging and therapy. Different solution methods of transient radiative transport equation for analyzing short pulse laser transport through tissues needed to determine tissue optical properties are discussed. Discussion about bio-heat transfer models are presented which are used to analyze the temperature distribution and heat affected zones in tissues following laser therapy. Nanoparticles are used to improve the efficacy of imaging and therapy and their role and associated safety and toxicity issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash M (2010) Potential applications of nanoparticles. Int J Pharma Bio Sci V1(1)

    Google Scholar 

  • Bayazitoglu Y, Kheradmand S, Tullius TK (2013) An overview of nanoparticle assisted laser therapy. Int J Heat Mass Transf 67:469–486

    Article  Google Scholar 

  • Becker W, Bergmann A, Wabnitz H, Grosenick D, Liebert A (2001) High count rate multichannel TCSPC for optical tomography. Proc SPIE 4431:249–255

    Article  Google Scholar 

  • Binzoni T, Torricelli A, Giust R, Sanguinetti B, Bernhard P, Spinelli L (2014) Bone tissue phantoms for optical flowmeters at large interoptode spacing generated by 3D-stereolithography. Biomed Opt Express 5(8):2715–2725

    Article  Google Scholar 

  • Bluestone AY, Stewart M, Lasker J, Abdoulaev GS, Hielscher AH (2004) Three dimensional optical tomographic brain imaging in small animals, part-1 hypercapina. J Biomed Opt 9:1046–1062

    Article  Google Scholar 

  • Bohndiek SE, Bodapati S, Van De Sompel D, Kothapalli S-R, Gambhir SS (2013) Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments. PLoS One 8(9):e75533

    Article  Google Scholar 

  • Chance B, Katzir A (1991) Time-resolved spectroscopy and imaging of tissue. Proc SPIE 1431:1–332

    Google Scholar 

  • Cook JR, Bouchard RR, Emelianov SY (2011) Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging. Biomed Opt Express 2(11):3193–3206

    Article  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  • Deng Z-S, Liu J (2002) Monte Carlo method to solve multidimensional bioheat transfer problem. Numer Heat Tr B Fundam 42:543–567

    Article  Google Scholar 

  • Dininni P, Martelli F, Zaccanti G (2011) Intralipid: towards a diffusive reference standard for optical tissue phantoms. Phys Med Biol 56:N21–N28

    Article  Google Scholar 

  • Dombrovsky LA, Timchenko V, Jackson M, Yeoh GH (2011) A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int J Heat Mass Transf 54:5459–5469

    Article  MATH  Google Scholar 

  • Dombrovsky LA, Randrianalisoa JH, Lipinski W, Timchenko V (2013) Simplified approaches to radiative transfer simulations in laser-induced hyperthermia of superficial tumors. Comput Therm Sci 5:521–530

    Article  Google Scholar 

  • Ganguly M, Miller S, Mitra K (2015a) Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers. Lasers Surg Med 47(9):711–722

    Article  Google Scholar 

  • Ganguly M, O’Flaherty R, Mitra K, Sajjadi A (2015b) Tissue response to short pulse laser irradiation. In: Becker SM, Kuznetsov AV (eds) Heat transfer and fluid flow in biological processes, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934

    Article  Google Scholar 

  • Godavarty A, Eppstein EP, Zhang C, Sevick-Muraka EM (2005) Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study. Radiology 235:148–154

    Article  Google Scholar 

  • Guo Z, Kim K (2003) Ultrafast-laser-radiation transfer in heterogeneous tissues with the discrete-ordinates method. Appl Optics 42:2897–2905

    Article  Google Scholar 

  • Guo Z, Kumar S (2001a) Radiation element method for transient hyperbolic radiative transfer in plane parallel inhomogeneous media. Num Heat Trans B 39:371–387

    Article  Google Scholar 

  • Guo Z, Kumar S (2001b) Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media. Appl Optics 40:3156–3163

    Article  Google Scholar 

  • Guo Z, Wan SK (2007) Simulated parametric studies in optical imaging of tumors through temporal log-slope difference mapping. Med Eng Phys 29:1142–1148

    Article  Google Scholar 

  • Guo Z, Aber J, Garetz BA, Kumar S (2002) Monte Carlo simulation and experiments of pulsed radiative transfer. J Quant Spec Rad Trans 73:159–168

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. J Biomater 26:3995–4021

    Article  Google Scholar 

  • Hall DJ, Hebden JC, Delpy DT (1997) Imaging very-low-contrast objects in breast like scattering media with a time-resolved method. Appl Optics 36:7270–7276

    Article  Google Scholar 

  • Hebden JC, Hall DJ, Firbank M, Delpy DT (1995) Time-resolved optical imaging of a solid tissue-equivalent phantom. Appl Optics 34:8038–8047

    Article  Google Scholar 

  • Hebden JC, Gonzalez FM, Gibson A, Hillman EMC, Yusof R, Everdell N, Delpy DT, Zaccanti G, Martelli F (2003) Assessment of an in situ temporal calibration method for time-resolved optical tomography. J Biomed Opt 8:87–92

    Article  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100:13549–13554

    Article  Google Scholar 

  • Huang X, El-Sayed IH, El-Sayed MA (2010) Applications of gold nanorods for cancer imaging and photothermal therapy. Methods Mol Biol 624:43–357

    Google Scholar 

  • Ishimaru A, Kuga Y, Cheung RLT, Shimizu K (1983) Scattering and diffusion of a beam wave in randomly distributed scatterers. J Opt Soc Am 73:131–136

    Article  Google Scholar 

  • Jaunich M, Raje S, Kim K, Mitra K, Guo Z (2008) Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int J Heat Mass Trans 51(23–24):5511–5521

    Article  MATH  Google Scholar 

  • Khanafer K, Vafai K (2009) Synthesis of mathematical models representing bioheat transport. In: Minkowycz WJ, Sparrow EM, Abraham JP (eds) Advances in numerical heat transfer, vol 3. CRC Press, Boca Raton, pp 1–28

    Chapter  Google Scholar 

  • Khosroshahia ME, Nourbakhsh MS (2011) Enhanced laser tissue soldering using indocyanine green chromophore and gold nanoshells combination. J Biomed Opt 16(8):088002

    Article  Google Scholar 

  • Kim HK, Hielscher AH (2009) A PDE-constrained SQP algorithm for optical tomography based on the frequency domain equation of radiative transfer. Inv Prob 25:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Klose AD, Netz U, Beuthan J, Hielsher AH (2002) Optical tomography using the time-independent equation of radiative transfer. 1. Forward model. J Quant Spec Rad Trans 72:691–713

    Article  Google Scholar 

  • Kou H-S, Shih T-C, Lin W-L (2003) Effect of the directional blood flow on thermal dose distribution during thermal therapy: an application of a Green’s function based on the porous model. Phys Med Biol 48:1577–1589

    Article  Google Scholar 

  • Kumar S, Srivastava A (2016) Numerical investigation of the influence of pulsatile blood flow on temperature distribution within the body of laser-irradiated biological tissue phantoms. Int J Heat Mass Transf 95:662–677

    Article  Google Scholar 

  • Kumar S, Mitra K, Yamada Y (1996) Hyperbolic damped-wave models for transient light-pulse propagation in scattering media. Appl Optics 35:3372–3378

    Article  Google Scholar 

  • Lacy AA, Collier T, Price JE, Dharmawardhane S, Kortum RR (2002) Near real-time in vivo confocal imaging of mouse mammary tumors. Front Biosci 7:137–145

    Article  Google Scholar 

  • Lin AW, Lewinski NA, West JL, Halas NJ, Drezek RA (2005) Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells. J Biomed Opt 10:064035

    Article  Google Scholar 

  • Liu J, Deng Z-S (2009) Numerical methods for solving bioheat transfer equations in complex situations. In: Minkowycz WJ, Sparrow EM, Abraham JP (eds) Advances in numerical heat transfer, vol 3. CRC Press, Boca Raton, pp 75–120

    Chapter  Google Scholar 

  • Liu F, Yoo KM, Alfano RR (1993) Ultrafast laser-pulse transmission and imaging through biological tissue. Appl Optics 32:554–558

    Article  Google Scholar 

  • Liu X-Z, Yi Z, Fei Z, Xiu-Fen G (2013) Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method. Chin Phys B 22(2):24301

    Article  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    Article  Google Scholar 

  • Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog – conjugated hollow gold nanospheres. Clin Cancer Res 15:876–886

    Article  Google Scholar 

  • Majaron B, Milanič M, Premru J (2015) Monte Carlo simulation of radiation transport in human skin with rigorous treatment of curved tissue boundaries. J Biomed Opt 20(1):015002

    Article  Google Scholar 

  • Milanič M, Majaron B (2011) Three-dimensional Monte Carlo model of pulsed laser treatment of cutaneous vascular lesions. J Biomed Opt 16(12):128002

    Article  Google Scholar 

  • Milanič M, Majaron B, Nelson JS (2007) Pulsed photothermal temperature profiling of agar tissue phantoms. Lasers Med Sci 22:279–284

    Article  Google Scholar 

  • Mitra K, Kumar S (1999) Development and comparison of models for light pulse transport through scattering absorbing media. Appl Optics 38:188–196

    Article  Google Scholar 

  • Mitra K, Lai MS, Kumar S (1997) Transient radiation transport in participating media within a rectangular enclosure. AIAA J Thermo Heat Trans 11:409–414

    Article  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176

    Article  Google Scholar 

  • Pal G, Basu S, Mitra K, Vo-Dinh T (2006) Time-resolved optical tomography using short-pulse laser for tumor detection. Appl Optics 42:250–258

    Google Scholar 

  • Patterson MS, Chance B, Wilson BC (1989) Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl Optics 28:2331–2336

    Article  Google Scholar 

  • Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt 11(4):041102

    Article  Google Scholar 

  • Proskurin S, Yamada Y, Takahashi Y (1995) Absorption coefficient measurements of strongly scattering media using time-resolved transmittance of a short pulse in near-infrared wavelength range. Opt Rev 2:292–297

    Article  Google Scholar 

  • Rogers WJ, Meyer CH, Kramer CM (2006) Cardiovascular medicine technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract 3:554–562

    Article  Google Scholar 

  • Sahoo N, Ghosh S, Narasimhan A, Das SK (2014) Investigation of non-Fourier effects in bio tissues during laser assisted photo-thermal therapy. Int J Therm Sci 76:208–220

    Article  Google Scholar 

  • Sakami M, Mitra K, Hsu PF (2002) Analysis of light pulse transport through two-dimensional scattering and absorbing media. J Quant Spec Rad Trans 73:169–179

    Article  Google Scholar 

  • Sawetprawichkul A, Hsu PF, Mitra K, Sakami MA (2000) Monte Carlo Study of the transient radiative transfer within the one-dimensional multi-layered slab. Proc IMECE 366–1:145–153

    Google Scholar 

  • Schmid G (2004) Clusters and colloids: From theory to applications. VCH, New York

    Google Scholar 

  • Schultz DA (2003) Plasmon resonant particles for biological detection. Curr Opin Biotechnol 14:13–22

    Article  Google Scholar 

  • Shen H, Wang G (2010) A tetrahedron-based inhomogeneous Monte Carlo simulator. Phys Med Biol 55:947–962

    Article  Google Scholar 

  • Shrivastava D, Vaughan JT (2009) A generic bioheat thermal model for a perfused tissue. J Biomech Eng 131(7):074506

    Article  Google Scholar 

  • Singh R, Mishra SC, Roy NK, Shekhawat NS, Mitra K (2007) An insight into the modeling of short-pulse laser transport through a participating medium. Num Heat Trans B 52:373–385

    Article  Google Scholar 

  • Stańczyk M, Telega JJ (2002) Modelling of heat transfer in biomechanics – a review: part I. Soft tissues. Acta Bioeng Biomech 4:31–61

    Google Scholar 

  • Stańczyk M, Van Leeuwen GMJ, Van Steenhoven AA (2007) Discrete vessel heat transfer in perfused tissue – model comparison. Phys Med Biol 52:2379–2231

    Article  Google Scholar 

  • Tan ZM, Hsu PF (2001) An integral formulation of transient radiative transfer. ASME J Heat Trans 123:466–475

    Article  Google Scholar 

  • Tjahjono IK, Bayazitoglu Y (2008) Near infrared light heating of a slab embedded by nano particles. Int J Heat Mass Transf 51:1505–1515

    Article  MATH  Google Scholar 

  • Troutman TS, Barton JK, Romanowski M (2007) Optical coherence tomography with plasmon resonant nanorods of gold. Opt Lett 32:1438–1440

    Article  Google Scholar 

  • Tuchin V (2000) Tissue optics. SPIE Press, Bellingham

    Google Scholar 

  • Ueda Y, Ohta K, Oda M, Miwa M, Tsuchiya Y, Yamashita Y (2001) Three-dimensional imaging of a tissue like phantom by diffusion optical tomography. Appl Optics 40:6349–6355

    Article  Google Scholar 

  • Vogt WC, Jia C, Wear KA, Garra BS, Pfefer TJ (2016) Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties. J Biomed Opt 21(10):101405

    Article  Google Scholar 

  • Whelan WM, Wyman DR, Wilson BC (1995) Investigations of large vessel cooling during interstitial laser heating. Med Phys 22(1):105–115

    Article  Google Scholar 

  • Whelan WM, Chun P, Chin CL, Sherar MD, Vitkin IA (2001) Laser thermal therapy: utility of interstitial fluence monitoring for locating optical sensors. Phys Med Biol 46:N91–N96

    Article  Google Scholar 

  • Yamada Y (1995) Light-tissue interaction and optical imaging in biomedicine. Ann Rev Fluid Mech Heat Trans 6:1–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Mitra, K., Miller, S. (2017). Introduction. In: Short Pulse Laser Systems for Biomedical Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-54253-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54253-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54252-2

  • Online ISBN: 978-3-319-54253-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics