Advertisement

Modeling the Impact of Privacy on Information Diffusion in Social Networks

  • Livio BioglioEmail author
  • Ruggero G. Pensa
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Humans like to disseminate ideas and news, as proved by the huge success of online social networking platforms such as Facebook or Twitter. On the other hand, these platforms have emphasized the dark side of information spreading, such as the diffusion of private facts and rumors in the society. Fortunately, in some cases, online social network users can set a level of privacy and decide to whom to show their information. However, they cannot control how their friends will use this information. The behavior of each user depends on her attitude toward privacy, that has a crucial role in the way information propagates across the network. With the aim of providing a mathematical tool for measuring the exposure of networks to privacy leakage risks, we extend the classic Susceptible-Infectious-Recovered (SIR) epidemic model in order to take the privacy attitude of users into account. We leverage such model to measure the contribution of the privacy attitude of each individual to the robustness of the whole network to the spread of personal information, depending on its structure and degree distribution. We study experimentally our model by means of stochastic simulations on four synthetic networks generated with classical algorithms.

Keywords

Complex networks Modeling Information diffusion Privacy 

Notes

Acknowledgements

This work was supported by Fondazione CRT (grant number 2015-1638).

References

  1. 1.
    Abbey, H.: An examination of the reed-frost theory of epidemics. Hum. Biol. 24(3), 201 (1952)Google Scholar
  2. 2.
    Akcora, C.G., Carminati, B., Ferrari, E.: Privacy in social networks: how risky is your social graph? In: Proceedings of IEEE ICDE 2012, pp. 9–19. IEEE Computer Society (2012)Google Scholar
  3. 3.
    Akcora, C.G., Carminati, B., Ferrari, E.: Risks of friendships on social networks. In: Proceedings of IEEE ICDM 2012, pp. 810–815. IEEE Computer Society (2012)Google Scholar
  4. 4.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barbieri, N., Bonchi, E., Manco, G.: Influence-based network-oblivious community detection. In: Proceedings of IEEE ICDM 2013, pp. 955–960. IEEE Computer Society (2013)Google Scholar
  6. 6.
    Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71 (2005)Google Scholar
  7. 7.
    Becker, J., Chen, H.: Measuring privacy risk in online social networks. In: Proceedings of Web 2.0 Security and Privacy (W2SP) (2009)Google Scholar
  8. 8.
    Cavoukian, A.: Privacy by design [leading edge]. IEEE Technol. Soc. Mag. 31(4), 18–19 (2012)CrossRefGoogle Scholar
  9. 9.
    Daley, D.J., Kendall, D.G.: Epidemics and rumours. Nature 208, 1118 (1964)ADSCrossRefGoogle Scholar
  10. 10.
    Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat-Pérez, A., Pham, M., Boncz, P.A.: The LDBC social network benchmark: interactive workload. In: Proceedings of ACM SIGMOD 2015, pp. 619–630. ACM (2015)Google Scholar
  12. 12.
    Gruhl, D., Liben-Nowell, D., Guha, R.V., Tomkins, A.: Information diffusion through blogspace. SIGKDD Explor. 6(2), 43–52 (2004)CrossRefGoogle Scholar
  13. 13.
    Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press (2008)Google Scholar
  14. 14.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of ACM SIGKDD 2003, pp. 137–146. ACM (2003)Google Scholar
  15. 15.
    Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. PNAS 110(15), 5802–5805 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online social networks. TKDD 5(1), 6 (2010)CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Gummadi, P.K., Krishnamurthy, B., Mislove, A.: Analyzing facebook privacy settings: user expectations vs. reality. In: Proceedings of ACM SIGCOMM IMC ’11, pp. 61–70. ACM (2011)Google Scholar
  18. 18.
    Maki, D.P., Thompson, M.: Mathematical models and applications: with emphasis on the social, life, and management sciences. Prentice-Hall (1973)Google Scholar
  19. 19.
    Moreno, Y., Nekovee, M., Pacheco, A.F.: Dynamics of rumor spreading in complex networks. Phys. Rev. E 69(6), 066130 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Nekovee, M., Moreno, Y., Bianconi, G., Marsili, M.: Theory of rumour spreading in complex social networks. CoRR (2008). arXiv:0807.1458
  21. 21.
    Sabella, R.A., Patchin, J.W., Hinduja, S.: Cyberbullying myths and realities. Comput. Hum. Behav. 29(6), 2703–2711 (2013)CrossRefGoogle Scholar
  22. 22.
    Sudbury, A.: The proportion of the population never hearing a rumour. J. Appl. Probab. 443–446 (1985)Google Scholar
  23. 23.
    Talukder, N., Ouzzani, M., Elmagarmid, A.K., Elmeleegy, H., Yakout, M.: Privometer: privacy protection in social networks. In: Proceedings of M3SN’10, pp. 266–269. IEEE (2010)Google Scholar
  24. 24.
    Wang, Y., Nepali, R.K., Nikolai, J.: Social network privacy measurement and simulation. In: Proceedings of ICNC 2014, pp. 802–806. IEEE (2014)Google Scholar
  25. 25.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–410 (1998)CrossRefGoogle Scholar
  26. 26.
    Wu, L., Majedi, M., Ghazinour, K., Barker, K.: Analysis of social networking privacy policies. In: Proceedings of 2010 EDBT/ICDT Workshops. ACM (2010)Google Scholar
  27. 27.
    Zanette, D.H.: Dynamics of rumor propagation on small-world networks. Phys. Rev. E 65(4), 041908 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    Zheleva, E., Getoor, L.: Privacy in social networks: a survey. In: Social Network Data Analytics, pp. 277–306. Springer, US (2011)Google Scholar
  29. 29.
    Zhou, J., Liu, Z., Li, B.: Influence of network structure on rumor propagation. Phys. Lett. A 368(6), 458–463 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Zhu, H., Huang, C., Li, H.: Information diffusion model based on privacy setting in online social networking services. Comput. J. 58(4), 536–548 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TurinTurinItaly

Personalised recommendations