Everyday the Same Picture: Popularity and Content Diversity

  • Alessandro Bessi
  • Fabiana Zollo
  • Michela Del Vicario
  • Antonio Scala
  • Fabio Petroni
  • Bruno GonçcalvesEmail author
  • Walter Quattrociocchi
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


Facebook is flooded by diverse and heterogeneous content, from kittens up to music and news, passing through satirical and funny stories. Each piece of that vivid production reflects the heterogeneity of the underlying social background and provides sometimes interesting opportunities for the study of social dynamics. Indeed, in Facebook we found an interesting case: a page having more than 40 K followers that every day posts the same picture of a popular Italian singer. We use such a peculiar page as a baseline for the study and modeling of the relationship between content heterogeneity and popularity. In particular, we perform a comparative analysis of information consumption patterns with respect to pages posting heterogeneous content (science and conspiracy news). We conclude the paper by introducing a model mimicking users selection preferences accounting for the heterogeneity of contents.


Probability Density Function Probability Density Function Beta Distribution Online Social Network Bipartite Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding for this work was provided by EU FET project MULTIPLEX nr. 317532 and SIMPOL nr. 610704. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We want to thank Prof. Guido Caldarelli for precious insights and contribution on the data analysis. Special thanks to Josif Stalin, Stefano Alpi, Michele Degani for giving access to the Facebook page of La stessa foto di Toto Cutugno ogni giorno. Bruno Gonçalves thanks the Moore and Sloan Foundations for support as part of the Moore-Sloan Data Science Environment at NYU.


  1. 1.
    Ebola e gattini. (2015). Accessed Jan 2015, facebook Page
  2. 2.
    A favore delle scie chimiche. (2015). Accessed Jan 2015, facebook Page
  3. 3.
    La stessa foto di toto cutugno ogni giorno. (2015). Accessed Jan 2015, facebook Page
  4. 4.
    Adamic, L., Glance, N.: The Political Blogosphere and the 2004 U.S. Election: Divided They Blog. In: LinkKDD ’05: Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43 (2005)Google Scholar
  5. 5.
    Anagnastopolos, A., Bessi, A., Caldarelli, G., Del Vicario, M., Petroni, F., Scala, A., Zollo, F., Quattrociocchi, W.: Viral misinformation: the role of homophily and polarization. arXivGoogle Scholar
  6. 6.
    Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference, pp. 33–42. WebSci ’12, ACM, New York, NY, USA (2012). doi: 10.1145/2380718.2380723
  7. 7.
    Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: forecasting popularity. In: ICWSM (2012)Google Scholar
  8. 8.
    Bauckhage, C.: Insights into internet memes. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media, pp. 42–49. AAAI (2011)Google Scholar
  9. 9.
    Ben-Naim, E., Krapivsky, P.L., Vazquez, F., Redner, S.: Unity and discord in opinion dynamics. Physica A (2003)Google Scholar
  10. 10.
    Bessi, A., Caldarelli, G., Del Vicario, M., Scala, A., Quattrociocchi, W.: Social determinants of content selection in the age of (Mis)information. In: Aiello, L., McFarland, D. (eds.) Social Informatics, Lecture Notes in Computer Science, vol. 8851, pp. 259–268. Springer International Publishing (2014). doi: 10.1007/978-3-319-13734-6_18
  11. 11.
    Bessi, A., Coletto, M., Davidescu, G.A., Scala, A., Quattrociocchi, W.: Science vs Conspiracy: collective narratives in the age of misinformation. PLoS One (to appear)Google Scholar
  12. 12.
    Bessi, A., Scala, A., Zhang, Q., Rossi, L., Quattrociocchi, W.: The economy of attention in the age of (mis)information. J. Trust Manag. (to appear)Google Scholar
  13. 13.
    Bond, R.M., Fariss, C.J., Jones, J.J., Kramer, A.D.I., Marlow, C., Settle, J.E., Fowler, J.H.: A 61-million-person experiment in social influence and political mobilization. Nature 489(7415), 295–298, Sept 2012. doi: 10.1038/nature11421
  14. 14.
    Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591, June 2009. doi: 10.1103/RevModPhys.81.591
  15. 15.
    Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197, Sept 2010. doi: 10.1126/science.1185231
  16. 16.
    Cheng, J., Adamic, L., Dow, A.P., Kleinberg, J.M., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web, pp. 925–936. WWW ’14, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2014). doi: 10.1145/2566486.2567997
  17. 17.
    Dawkins, R.: The Selfish Gene. Oxford University Press (1989)Google Scholar
  18. 18.
    Dukas, R., Kamil, A.C.: Limited attention: the constraint underlying search image. Behav. Ecol. 12(2), 192–199 (2001)CrossRefGoogle Scholar
  19. 19.
    Figueiredo, F., Almeida, J.M., Benevenuto, F., Gummadi, K.P.: Does content determine information popularity in social media?: a case study of youtube videos’ content and their popularity. In: Proceedings of the 32nd annual ACM conference on Human factors in computing systems, pp. 979–982. ACM (2014)Google Scholar
  20. 20.
    Friggeri, A., Adamic, L., Eckles, D., Cheng, J.: Rumor Cascades. AAAI Conference on Weblogs and Social Media (ICWSM) (2013)Google Scholar
  21. 21.
    Goldhaber, M.H.: The attention economy and the net. First Monday 2(4) (1997)Google Scholar
  22. 22.
    Gómez, V., Kaltenbrunner, A., López, V.: Statistical analysis of the social network and discussion threads in slashdot. In: Proceedings of the 17th international conference on World Wide Web, pp. 645–654. ACM (2008)Google Scholar
  23. 23.
    Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. (2011)Google Scholar
  24. 24.
    Hannak, A., Margolin, D., Keegan, B., Weber, I.: Get back! you don’t know me like that: the social mediation of fact checking interventions in twitter conversations. In: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM’14). Ann Arbor, MI, June 2014Google Scholar
  25. 25.
    Kleinberg, J.: Analysis of large-scale social and information networks. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371, (2013)Google Scholar
  26. 26.
    Lehmann, J., Gonçalves, B., Ramasco, J.J., Cattuto, C.: Dynamical classes of collective attention in twitter. In: Proceedings of the 21st International Conference on World Wide Web, pp. 251–260. WWW ’12, ACM, New York, NY, USA (2012). doi: 10.1145/2187836.2187871
  27. 27.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on digg and twitter social networks. ICWSM 10, 90–97 (2010)Google Scholar
  28. 28.
    Lerman, K., Hogg, T.: Using a model of social dynamics to predict popularity of news. In: Proceedings of the 19th international conference on World wide web, pp. 621–630. ACM (2010)Google Scholar
  29. 29.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497–506. ACM (2009)Google Scholar
  30. 30.
    Lewis, K., Gonzalez, M., Kaufman, J.: Social selection and peer influence in an online social network. Proc. Nat. Acad. Sci. 109(1), 68–72, Jan 2012. doi: 10.1073/pnas.1109739109
  31. 31.
    Mocanu, D., Baronchelli, A., Gonçalves, B., Perra, N., Zhang, Q., Vespignani, A.: The twitter of babel: mapping world languages through microblogging platforms. PLoS One 8(4), e61981. (2013)
  32. 32.
    Onnela, J.P., Reed-Tsochas, F.: Spontaneous emergence of social influence in online systems. Proce. Nat. Academ. Sci. 107(43), 18375–18380, Oct 2010. doi: 10.1073/pnas.0914572107
  33. 33.
    Paolucci, M., Eymann, T., Jager, W., Sabater-Mir, J., Conte, R., Marmo, S., Picascia, S., Quattrociocchi, W., Balke, T., Koenig, S., Broekhuizen, T., Trampe, D., Tuk, M., Brito, I., Pinyol, I., Villatoro, D.: Social Knowledge for e-Governance: Theory and Technology of Reputation. ISTC-CNR, Roma (2009)Google Scholar
  34. 34.
    Quattrociocchi, W., Caldarelli, G., Scala, A.: Opinion dynamics on interacting networks: media competition and social influence. Sci. Rep. 4, May 2014. doi: 10.1038/srep04938
  35. 35.
    Quattrociocchi, W., Conte, R., Lodi, E.: Opinions manipulation: media, power and gossip. Adv. Complex Syst. 14(4), 567–586 (2011)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Quattrociocchi, W., Paolucci, M., Conte, R.: On the effects of informational cheating on social evaluations: image and reputation through gossip. IJKL 5(5/6), 457–471. (2009)
  37. 37.
    Ratkiewicz, J., Conover, M., Meiss, M., Gonçcalves, B., Flammini, A., Menczer, F.: Detecting and tracking political abuse in social media. In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (2012)Google Scholar
  38. 38.
    Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F.: Detecting and tracking political abuse in social media. In: ICWSM (2011)Google Scholar
  39. 39.
    Rojecki, A., Meraz, S.: Rumors and factitious informational blends: the role of the web in speculative politics. New Media Soc. (2014). Accessed May 2014
  40. 40.
    Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762), 854–856 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Simon, H.: Designing organizations for an information-rich world. In: Computers, Communication, and the Public Interest, pp. 37–52 (1971)Google Scholar
  42. 42.
    Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun. ACM 53(8), 80–88 (2010)CrossRefGoogle Scholar
  43. 43.
    Tapscott, D., Williams, A.D.: Wikinomics: How Mass Collaboration Changes Everything. Portfolio Hardcover (2006)Google Scholar
  44. 44.
    Tatar, A., de Amorim, M.D., Fdida, S., Antoniadis, P.: A survey on predicting the popularity of web content. J. Internet Serv. Appl. 5(1), 1–20 (2014)CrossRefGoogle Scholar
  45. 45.
    Tatar, A., Leguay, J., Antoniadis, P., Limbourg, A., de Amorim, M.D., Fdida, S.: Predicting the popularity of online articles based on user comments. In: Proceedings of the International Conference on Web Intelligence, Mining and Semantics, p. 67. ACM (2011)Google Scholar
  46. 46.
    Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social contagion. Proc. Nat. Academ. Sci. (2012)
  47. 47.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Academ. Sci. 99(9), 5766–5771 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. (2012)Google Scholar
  49. 49.
    Zadeh, A.H., Sharda, R.: Modeling brand post popularity dynamics in online social networks. Decis. Support Syst. (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Bessi
    • 1
  • Fabiana Zollo
    • 2
  • Michela Del Vicario
    • 2
  • Antonio Scala
    • 3
  • Fabio Petroni
    • 4
  • Bruno Gonçcalves
    • 5
    Email author
  • Walter Quattrociocchi
    • 2
  1. 1.Information Sciences Institute, University of Southern CaliforniaLos AngelesUSA
  2. 2.IMT Institute for Advanced StudiesLuccaItaly
  3. 3.ISC CNRRomeItaly
  4. 4.Sapienza University of RomeRomeItaly
  5. 5.Center for Data ScienceNew York UniversityNew YorkUSA

Personalised recommendations